Skip to main content
Top
Published in: Autonomous Robots 6/2018

27-11-2017

Design of vertebrae-inspired trunk mechanism for controlling walking behavior of semi-passive walker

Authors: Takashi Takuma, Hiroki Oku, Norimasa Asagi, Wataru Kase

Published in: Autonomous Robots | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A semi-passive walker that equips a small number of actuators attains locomotion through an interaction between its physical properties such as center of mass (CoM) and the ground in contact. Therefore, it is expected that the robot obtains a wide range of locomotion such as in its walking velocity by changing a trajectory of CoM. In this study, we focused on the trunk mechanism that largely influences the walking behavior by changing its CoM, and propose a vertebrae-inspired trunk mechanism in which tunable viscoelastic joints are embedded. By switching a mechanical property, that is, the viscoelasticity of the trunk joints, the cycle of the passive oscillation while walking is changed, and the robot obtains a wide range of the walking cycle. To verify this trunk mechanism, we developed a physical bipedal robot. The physical trunk mechanism does not require a supplemental actuator to oscillate the trunk actively, and does not require energy consumption to retain the viscoelasticity according to the devised mechanism. We also constructed simulation models equipping various types of trunk mechanisms for verifying the number and position of the trunk joints that influence the variation of the walking cycle. The simulation results suggest a criterion for the trunk mechanism design in which the walking cycle is influenced by the number and position of the joints. This paper concludes that the proposed trunk mechanism is a suitable and practical mechanical element that provides a wide range of the locomotion of semi-passive walker by utilizing its switchable mechanical property.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., & Kanehiro, F. (2005). Development of humanoid robot HRP-3P. In Proceedings of 2005 IEEE/RSJ international conference on humanoid robots (pp. 50–55). Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., & Kanehiro, F. (2005). Development of humanoid robot HRP-3P. In Proceedings of 2005 IEEE/RSJ international conference on humanoid robots (pp. 50–55).
go back to reference Anderson, S. O., Wisse, M., Atkeson, C. G., Hodgins, J. K., Zeglin, G. J., & Moyer, B. (2005). Powered bipeds based on passive dynamic principles. In Proceedings of 2004 IEEE/RSJ international conference on humanoid robots (CD–ROM) (pp. 110–116). Anderson, S. O., Wisse, M., Atkeson, C. G., Hodgins, J. K., Zeglin, G. J., & Moyer, B. (2005). Powered bipeds based on passive dynamic principles. In Proceedings of 2004 IEEE/RSJ international conference on humanoid robots (CD–ROM) (pp. 110–116).
go back to reference Asano, F., & Luo, Z. W. (2008a). Underactuated virtual passive dynamic walking with an upper body. In IEEE international conference on robotics and automation (ICRA) (pp. 2441–2446). Asano, F., & Luo, Z. W. (2008a). Underactuated virtual passive dynamic walking with an upper body. In IEEE international conference on robotics and automation (ICRA) (pp. 2441–2446).
go back to reference Asano, F., & Luo, Z. W. (2008b). Pseudo virtual passive dynamic walking and effect of upper body as counterweight. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2934–2939). Asano, F., & Luo, Z. W. (2008b). Pseudo virtual passive dynamic walking and effect of upper body as counterweight. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2934–2939).
go back to reference Asano, F., Yamakita, M., & Furuta, K. (2000). Virtual passive dynamic walking and energy-based control laws. In Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1149–1154). Asano, F., Yamakita, M., & Furuta, K. (2000). Virtual passive dynamic walking and energy-based control laws. In Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1149–1154).
go back to reference Benallegue, M., Laumond, J. P.,& Berthoz, A. (2013). Contribution of actuated head and trunk to passive walkers stabilization. In IEEE international conference on robotics and automation (ICRA) (pp. 5638–5648). Benallegue, M., Laumond, J. P.,& Berthoz, A. (2013). Contribution of actuated head and trunk to passive walkers stabilization. In IEEE international conference on robotics and automation (ICRA) (pp. 5638–5648).
go back to reference Bhounsule, P. A., Cortell, J., Greqal, A., Hendriksen, B., Karssen, J. G. D., Paul, C., et al. (2014). Low-bandwidth reflex-based control for lower power walking: 6k km on a single battery charge. The International Journal of Robotics Research, 33(10), 1305–1321.CrossRef Bhounsule, P. A., Cortell, J., Greqal, A., Hendriksen, B., Karssen, J. G. D., Paul, C., et al. (2014). Low-bandwidth reflex-based control for lower power walking: 6k km on a single battery charge. The International Journal of Robotics Research, 33(10), 1305–1321.CrossRef
go back to reference Cioni, M., Pisasale, M., Abela, S., Belfiore, T., & Micale, M. (2010). Physiological electromyographic activation patterns of trunk muscles during walking. Open Rehabilitation Journal, 3, 136–142.CrossRef Cioni, M., Pisasale, M., Abela, S., Belfiore, T., & Micale, M. (2010). Physiological electromyographic activation patterns of trunk muscles during walking. Open Rehabilitation Journal, 3, 136–142.CrossRef
go back to reference Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085.CrossRef Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085.CrossRef
go back to reference Collins, S. H., Wisse, M., & Ruina, A. (2001). A three-dimensional passive-dynamic walking robot with two legs and knees. The international Journal of Robotics Research, 20(7), 607–615.CrossRef Collins, S. H., Wisse, M., & Ruina, A. (2001). A three-dimensional passive-dynamic walking robot with two legs and knees. The international Journal of Robotics Research, 20(7), 607–615.CrossRef
go back to reference Deng, K., Zhao, M., & Xu, W. (2012). Passive dynamic walking with torso. In 2012 IEEE international conference on mechatronics and automation (pp. 273–278). Deng, K., Zhao, M., & Xu, W. (2012). Passive dynamic walking with torso. In 2012 IEEE international conference on mechatronics and automation (pp. 273–278).
go back to reference Dertien, E. (2006). Dynamic walking with dribbel. IEEE Robotics and Automation Magazine, 13(3), 118–122.CrossRef Dertien, E. (2006). Dynamic walking with dribbel. IEEE Robotics and Automation Magazine, 13(3), 118–122.CrossRef
go back to reference Haruna, M., Ogino, M., Hosoda, K., & Asada, M. (2001). Yet another humanoid walking—passive dynamic walking with torso under simple control. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 259–264). Haruna, M., Ogino, M., Hosoda, K., & Asada, M. (2001). Yet another humanoid walking—passive dynamic walking with torso under simple control. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 259–264).
go back to reference Hasegawa, S., & Fujii, N. (2003). Real-time rigid body simulation based on volumetric penalty method. In Haptic interfaces for virtual environment and teleoperator systems 2003 (HAPTICS 2003) (pp. 326–332). Hasegawa, S., & Fujii, N. (2003). Real-time rigid body simulation based on volumetric penalty method. In Haptic interfaces for virtual environment and teleoperator systems 2003 (HAPTICS 2003) (pp. 326–332).
go back to reference Kavanagh, J. J., Morrison, S., & Barrett, R. S. (2005). Coordination of head and trunk accelerations during walking. Journal of Applied Physiology, 94, 468–475. Kavanagh, J. J., Morrison, S., & Barrett, R. S. (2005). Coordination of head and trunk accelerations during walking. Journal of Applied Physiology, 94, 468–475.
go back to reference Kraus, P. R.,& Kumar, V. (1997). Compliant contact models for rigid body collisions. In 1997 IEEE international conference on robotics and automation (pp. 1382–1387). Kraus, P. R.,& Kumar, V. (1997). Compliant contact models for rigid body collisions. In 1997 IEEE international conference on robotics and automation (pp. 1382–1387).
go back to reference McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2), 62–82.CrossRef McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2), 62–82.CrossRef
go back to reference McGeer, T. (1993). Dynamics and control of bipedal locomotion. Journal of Theoretical Biology, 163(33), 277–314.CrossRef McGeer, T. (1993). Dynamics and control of bipedal locomotion. Journal of Theoretical Biology, 163(33), 277–314.CrossRef
go back to reference Mizuuchi, I., Tajima, R., Yoshikai, T., Sato, D., Nagashima, K., Inaba, M., Kuniyoshi, Y., & Inoue, H. (2002). The design and control of the flexible spine of a fully tendon-driven humanoid “kenta”. In Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems (IROS2002) (pp. 2527–2532). Mizuuchi, I., Tajima, R., Yoshikai, T., Sato, D., Nagashima, K., Inaba, M., Kuniyoshi, Y., & Inoue, H. (2002). The design and control of the flexible spine of a fully tendon-driven humanoid “kenta”. In Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems (IROS2002) (pp. 2527–2532).
go back to reference Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., & Inoue, H. (2007). The experimental humanoid robot H7: A research platform for autonomous behaviour. Philosophical Transactions of the Royal Society A, 365(1850), 79–107.CrossRef Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., & Inoue, H. (2007). The experimental humanoid robot H7: A research platform for autonomous behaviour. Philosophical Transactions of the Royal Society A, 365(1850), 79–107.CrossRef
go back to reference Oku, H., Asagi, N., Takuma, T., & Masuda, T. (2015). Passive trunk mechanism for controlling walking behavior of semi-passive walker. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 944–949). Oku, H., Asagi, N., Takuma, T., & Masuda, T. (2015). Passive trunk mechanism for controlling walking behavior of semi-passive walker. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 944–949).
go back to reference Park, I., Kim, J., Park, S., & Oh, J. (2004). Development of humanoid robot platform KHR-2. In IEEE-RAS/RSJ international conference on humanoid robots (humanoids), CD–ROM. Park, I., Kim, J., Park, S., & Oh, J. (2004). Development of humanoid robot platform KHR-2. In IEEE-RAS/RSJ international conference on humanoid robots (humanoids), CD–ROM.
go back to reference Park, J. H. (2001). Impedance control for biped robot locomotion. IEEE Transactions on Robotics and Automation, 17(6), 870–882.CrossRef Park, J. H. (2001). Impedance control for biped robot locomotion. IEEE Transactions on Robotics and Automation, 17(6), 870–882.CrossRef
go back to reference Rummel, J., & Seyfarth, A. (2010). Passive stabilization of the trunk in walking. In Proceedings of international conference on simulation, modeling and programming for autonomous robots (pp. 127–136). Rummel, J., & Seyfarth, A. (2010). Passive stabilization of the trunk in walking. In Proceedings of international conference on simulation, modeling and programming for autonomous robots (pp. 127–136).
go back to reference Stoquart, G., Detrembleur, C., & Lejeune, T. (2008). Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiologie Clinique/Clinical Neurophysiology, 38, 105–116.CrossRef Stoquart, G., Detrembleur, C., & Lejeune, T. (2008). Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiologie Clinique/Clinical Neurophysiology, 38, 105–116.CrossRef
go back to reference Takuma, T., & Hosoda, K. (2006). Controlling the walking period of a pneumatic muscle walker. International Journal of Robotics Research, 25(9), 861–866.CrossRef Takuma, T., & Hosoda, K. (2006). Controlling the walking period of a pneumatic muscle walker. International Journal of Robotics Research, 25(9), 861–866.CrossRef
go back to reference Takuma, T., Izawa, R., Inoue, T., & Masuda, T. (2012). Mechanical design of a trunk with redundant and viscoelastic joints for rhythmic quadruped locomotion. Advanced Robotics, 26, 745–764.CrossRef Takuma, T., Izawa, R., Inoue, T., & Masuda, T. (2012). Mechanical design of a trunk with redundant and viscoelastic joints for rhythmic quadruped locomotion. Advanced Robotics, 26, 745–764.CrossRef
go back to reference Takuma, T., Murata, Y., & Kase, W. (2017). Design of vertebrae-inspired trunk mechanism for robust and directive quadruped locomotion on rough terrain without requiring sensing and actuation. Journal of Robotics and Mechatronics, 29(3), 546–555.CrossRef Takuma, T., Murata, Y., & Kase, W. (2017). Design of vertebrae-inspired trunk mechanism for robust and directive quadruped locomotion on rough terrain without requiring sensing and actuation. Journal of Robotics and Mechatronics, 29(3), 546–555.CrossRef
go back to reference Vukobratovic, M., & Stephanenko, J. (1972). On the stability of anthropomorphic systems. Mathematical Biosciences, 15(1–2), 1–37.CrossRefMATH Vukobratovic, M., & Stephanenko, J. (1972). On the stability of anthropomorphic systems. Mathematical Biosciences, 15(1–2), 1–37.CrossRefMATH
go back to reference Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.). Hoboken: Wiley.CrossRef Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.). Hoboken: Wiley.CrossRef
go back to reference Wisse, M. (2004). Three additions to passive dynamic walking: Actuation, an upper body, and 3D stability. In IEEE RAS/RSJ international conference on humanoid robots (Humanoids 2004). Wisse, M. (2004). Three additions to passive dynamic walking: Actuation, an upper body, and 3D stability. In IEEE RAS/RSJ international conference on humanoid robots (Humanoids 2004).
go back to reference Wisse, M., & van Frankenhuyzen, J. (2002). Design and construction of MIKE; 2D autonomous biped based on passive dynamic walking. In 2nd international symposium on adaptive motion of animals and machines (AMAM). Wisse, M.,  & van Frankenhuyzen, J. (2002). Design and construction of MIKE; 2D autonomous biped based on passive dynamic walking. In 2nd international symposium on adaptive motion of animals and machines (AMAM).
go back to reference Wisse, M., Hobbelen, D. G. E., & Schwab, A. L. (2007). Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism. IEEE Transactions on Robotics, 23(1), 112–123.CrossRef Wisse, M., Hobbelen, D. G. E., & Schwab, A. L. (2007). Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism. IEEE Transactions on Robotics, 23(1), 112–123.CrossRef
go back to reference Wisse, M., Schwab, A. L., & van der Helm, F. C. T. (2004). Passive dynamic walking model with upper body. Robotica, 22, 681–688.CrossRef Wisse, M., Schwab, A. L., & van der Helm, F. C. T. (2004). Passive dynamic walking model with upper body. Robotica, 22, 681–688.CrossRef
Metadata
Title
Design of vertebrae-inspired trunk mechanism for controlling walking behavior of semi-passive walker
Authors
Takashi Takuma
Hiroki Oku
Norimasa Asagi
Wataru Kase
Publication date
27-11-2017
Publisher
Springer US
Published in
Autonomous Robots / Issue 6/2018
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9689-y

Other articles of this Issue 6/2018

Autonomous Robots 6/2018 Go to the issue