Skip to main content
Top

2018 | OriginalPaper | Chapter

4. Designing a Nanocargo with Fe3O4@Au: A Tri-pronged Mechanism for MR Imaging, Synaphic Drug-Delivery, and Apoptosis Induction in Cancer Cells

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cancer, considered as a hallmark of diseases, is responsible for second most mortality and morbidity rates. The greatest discovery in the fundamental cancer biology has not been transformed into clinical therapeutics. There is a vast incongruity existing due to lack of translational medicine targeting towards the cancerous cells both temporally and spatially. Moreover, the drugs available possess a plethora of side effects and are incapable of circumventing the biophysical barriers posed by tumor microphysiology. The two nano-vectors, viz., drug-delivery and imaging have come to the rescue in such a debilitating condition of cancer therapeutics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wilhelm, C., Lavialle, F., Péchoux, C., Tatischeff, I. & Gazeau, F. Intracellular trafficking of magnetic nanoparticles to design multifunctional biovesicles. Small 4, 577–582 (2008).CrossRef Wilhelm, C., Lavialle, F., Péchoux, C., Tatischeff, I. & Gazeau, F. Intracellular trafficking of magnetic nanoparticles to design multifunctional biovesicles. Small 4, 577–582 (2008).CrossRef
2.
go back to reference Cheng, F. Y. et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26, 729–738 (2005).CrossRef Cheng, F. Y. et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26, 729–738 (2005).CrossRef
3.
go back to reference Hergt, R. & Dutz, S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187–192 (2007).CrossRef Hergt, R. & Dutz, S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187–192 (2007).CrossRef
4.
go back to reference Habib, A. H., Ondeck, C. L., Chaudhary, P., Bockstaller, M. R. & McHenry, M. E. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 103, 07A307 (2008).CrossRef Habib, A. H., Ondeck, C. L., Chaudhary, P., Bockstaller, M. R. & McHenry, M. E. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 103, 07A307 (2008).CrossRef
5.
go back to reference Lübbe, A. S. et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56, 4686–4693 (1996). Lübbe, A. S. et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56, 4686–4693 (1996).
6.
go back to reference Alexiou, C. et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000). Alexiou, C. et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000).
7.
go back to reference Widder, K. J., Senyei, A. E. & Scarpelli, D. G. Magnetic Microspheres: A Model System for Site Specific Drug Delivery in Vivo. Exp. Biol. Med. 158, 141–146 (1978).CrossRef Widder, K. J., Senyei, A. E. & Scarpelli, D. G. Magnetic Microspheres: A Model System for Site Specific Drug Delivery in Vivo. Exp. Biol. Med. 158, 141–146 (1978).CrossRef
8.
go back to reference Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65, 271–284 (2000).CrossRef Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65, 271–284 (2000).CrossRef
9.
go back to reference Wang, S. & Low, P. S. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release 53, 39–48 (1998).CrossRef Wang, S. & Low, P. S. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release 53, 39–48 (1998).CrossRef
10.
go back to reference Wang, Y., Wei, X., Zhang, C., Zhang, F. & Liang, W. Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side effects. Ther Deliv 1, 273–287 (2010).CrossRef Wang, Y., Wei, X., Zhang, C., Zhang, F. & Liang, W. Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side effects. Ther Deliv 1, 273–287 (2010).CrossRef
11.
go back to reference Tang, X. & Pan, C. Y. Double hydrophilic block copolymers PEO-b-PGA: Synthesis, application as potential drug carrier and drug release via pH-sensitive linkage. J. Biomed. Mater. Res. - Part A 86, 428–438 (2008).CrossRef Tang, X. & Pan, C. Y. Double hydrophilic block copolymers PEO-b-PGA: Synthesis, application as potential drug carrier and drug release via pH-sensitive linkage. J. Biomed. Mater. Res. - Part A 86, 428–438 (2008).CrossRef
12.
go back to reference Rejinold, N. S., Chennazhi, K. P., Nair, S. V., Tamura, H. & Jayakumar, R. Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr. Polym. 83, 776–786 (2011).CrossRef Rejinold, N. S., Chennazhi, K. P., Nair, S. V., Tamura, H. & Jayakumar, R. Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr. Polym. 83, 776–786 (2011).CrossRef
13.
go back to reference Glangchai, L. C., Caldorera-Moore, M., Shi, L. & Roy, K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J. Control. Release 125, 263–272 (2008).CrossRef Glangchai, L. C., Caldorera-Moore, M., Shi, L. & Roy, K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J. Control. Release 125, 263–272 (2008).CrossRef
14.
go back to reference Low, P. S. & Antony, A. C. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev. 56, 1055–1058 (2004).CrossRef Low, P. S. & Antony, A. C. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev. 56, 1055–1058 (2004).CrossRef
15.
go back to reference Guo, M. et al. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials 32, 185–194 (2011).CrossRef Guo, M. et al. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials 32, 185–194 (2011).CrossRef
16.
go back to reference Sonvico, F. et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and in vitro experiments. Bioconjug. Chem. 16, 1181–1188 (2005).CrossRef Sonvico, F. et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and in vitro experiments. Bioconjug. Chem. 16, 1181–1188 (2005).CrossRef
17.
go back to reference Wang, Y., Wang, Y., Xiang, J. & Yao, K. Target-specific cellular uptake of taxol-loaded heparin-PEG-folate nanoparticles. Biomacromolecules 11, 3531–3538 (2010).CrossRef Wang, Y., Wang, Y., Xiang, J. & Yao, K. Target-specific cellular uptake of taxol-loaded heparin-PEG-folate nanoparticles. Biomacromolecules 11, 3531–3538 (2010).CrossRef
18.
go back to reference Sun, C., Sze, R. & Zhang, M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J. Biomed. Mater. Res. - Part A 78, 550–557 (2006).CrossRef Sun, C., Sze, R. & Zhang, M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J. Biomed. Mater. Res. - Part A 78, 550–557 (2006).CrossRef
19.
go back to reference Cirstoiu-Hapca, A., Bossy-Nobs, L., Buchegger, F., Gurny, R. & Delie, F. Differential tumor cell targeting of anti-HER2 (Herceptin®) and anti-CD20 (Mabthera®) coupled nanoparticles. Int. J. Pharm. 331, 190–196 (2007).CrossRef Cirstoiu-Hapca, A., Bossy-Nobs, L., Buchegger, F., Gurny, R. & Delie, F. Differential tumor cell targeting of anti-HER2 (Herceptin®) and anti-CD20 (Mabthera®) coupled nanoparticles. Int. J. Pharm. 331, 190–196 (2007).CrossRef
20.
go back to reference Leuschner, C. et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res. Treat. 99, 163–176 (2006).CrossRef Leuschner, C. et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res. Treat. 99, 163–176 (2006).CrossRef
21.
go back to reference Veiseh, O. et al. Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 5, 256–264 (2009).CrossRef Veiseh, O. et al. Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 5, 256–264 (2009).CrossRef
22.
go back to reference Yigit, M. V., Mazumdar, D. & Lu, Y. MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug. Chem. 19, 412–417 (2008).CrossRef Yigit, M. V., Mazumdar, D. & Lu, Y. MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug. Chem. 19, 412–417 (2008).CrossRef
23.
go back to reference Peterson, A. W., Wolf, L. K. & Georgiadis, R. M. Hybridization of mismatched or partially matched DNA at surfaces. J. Am. Chem. Soc. 124, 14601–14607 (2002).CrossRef Peterson, A. W., Wolf, L. K. & Georgiadis, R. M. Hybridization of mismatched or partially matched DNA at surfaces. J. Am. Chem. Soc. 124, 14601–14607 (2002).CrossRef
24.
go back to reference Vijayendran, R. A. & Leckband, D. E. A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73, 471–480 (2001).CrossRef Vijayendran, R. A. & Leckband, D. E. A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73, 471–480 (2001).CrossRef
25.
go back to reference Van Dijk, M. A. et al. Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486–95 (2006).CrossRef Van Dijk, M. A. et al. Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486–95 (2006).CrossRef
26.
go back to reference Robinson, I., Tung, L. D., Maenosono, S., Wälti, C. & Thanh, N. T. K. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2, 2624–2630 (2010).CrossRef Robinson, I., Tung, L. D., Maenosono, S., Wälti, C. & Thanh, N. T. K. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2, 2624–2630 (2010).CrossRef
27.
go back to reference Karaagac, O., Kockar, H., Beyaz, S. & Tanrisever, T. A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: Iron ion concentration effect. IEEE Trans. Magn. 46, 3978–3983 (2010).CrossRef Karaagac, O., Kockar, H., Beyaz, S. & Tanrisever, T. A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: Iron ion concentration effect. IEEE Trans. Magn. 46, 3978–3983 (2010).CrossRef
28.
go back to reference Yu, F., Yao, D. & Knoll, W. Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS). Nucleic Acids Res. 32, e75 (2004).CrossRef Yu, F., Yao, D. & Knoll, W. Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS). Nucleic Acids Res. 32, e75 (2004).CrossRef
29.
go back to reference Okahata, Y. et al. Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance. Anal. Chem. 70, 1288–1296 (1998).CrossRef Okahata, Y. et al. Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance. Anal. Chem. 70, 1288–1296 (1998).CrossRef
30.
go back to reference Fan, A., Lau, C. & Lu, J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal. Chem. 77, 3238–3242 (2005).CrossRef Fan, A., Lau, C. & Lu, J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal. Chem. 77, 3238–3242 (2005).CrossRef
31.
go back to reference Schroder, L., Lowery, T. J., Hilty, C., Wemmer, D. E. & Pines, A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science . 314, 446 (2006).CrossRef Schroder, L., Lowery, T. J., Hilty, C., Wemmer, D. E. & Pines, A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science . 314, 446 (2006).CrossRef
32.
go back to reference Xu, Z., Hou, Y. & Sun, S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 129, 8698–8699 (2007).CrossRef Xu, Z., Hou, Y. & Sun, S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 129, 8698–8699 (2007).CrossRef
33.
go back to reference Thaxton, C. S., Mirkin, C. A. & Nam, J. Nanoparticle-Based Bio – Bar Codes for the Ultrasensitive Detection of Proteins. Science. 301, 1884–1886 (2003).CrossRef Thaxton, C. S., Mirkin, C. A. & Nam, J. Nanoparticle-Based Bio – Bar Codes for the Ultrasensitive Detection of Proteins. Science. 301, 1884–1886 (2003).CrossRef
34.
go back to reference Aslan, K., Lakowicz, J. R. & Geddes, C. D. Plasmon light scattering in biology and medicine: New sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538–544 (2005).CrossRef Aslan, K., Lakowicz, J. R. & Geddes, C. D. Plasmon light scattering in biology and medicine: New sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538–544 (2005).CrossRef
35.
go back to reference Thanh, N. T. K. & Green, L. A. W. Functionalisation of nanoparticles for biomedical applications. Nano Today 5, 213–230 (2010).CrossRef Thanh, N. T. K. & Green, L. A. W. Functionalisation of nanoparticles for biomedical applications. Nano Today 5, 213–230 (2010).CrossRef
36.
go back to reference Huang, C., Jiang, J., Muangphat, C., Sun, X. & Hao, Y. Trapping Iron Oxide into Hollow Gold Nanoparticles. Nanoscale Res. Lett. 6, 1–5 (2011).CrossRef Huang, C., Jiang, J., Muangphat, C., Sun, X. & Hao, Y. Trapping Iron Oxide into Hollow Gold Nanoparticles. Nanoscale Res. Lett. 6, 1–5 (2011).CrossRef
38.
39.
go back to reference Luzar, A. & Chandler, D. Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 98, 8160–8173 (1993).CrossRef Luzar, A. & Chandler, D. Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 98, 8160–8173 (1993).CrossRef
40.
go back to reference Murphy, C. J. et al. The many faces of gold nanorods. J. Phys. Chem. Lett. 1, 2867–2875 (2010).CrossRef Murphy, C. J. et al. The many faces of gold nanorods. J. Phys. Chem. Lett. 1, 2867–2875 (2010).CrossRef
41.
go back to reference Goon, I. Y. et al. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem. Mater. 21, 673–681 (2009).CrossRef Goon, I. Y. et al. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem. Mater. 21, 673–681 (2009).CrossRef
42.
go back to reference Barr, T. L. An ESCA study of the termination of the passivation of elemental metals. J. Phys. Chem. 82, 1801–1810 (1978).CrossRef Barr, T. L. An ESCA study of the termination of the passivation of elemental metals. J. Phys. Chem. 82, 1801–1810 (1978).CrossRef
44.
go back to reference Jaramillo, T. F., Baeck, S. H., Cuenya, B. R. & McFarland, E. W. Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc. 125, 7148–7149 (2003).CrossRef Jaramillo, T. F., Baeck, S. H., Cuenya, B. R. & McFarland, E. W. Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc. 125, 7148–7149 (2003).CrossRef
45.
go back to reference Lo, C. K. et al. Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J. Mater. Chem. 17, 2418 (2007).CrossRef Lo, C. K. et al. Homocysteine-protected gold-coated magnetic nanoparticles: synthesis and characterisation. J. Mater. Chem. 17, 2418 (2007).CrossRef
46.
go back to reference Siegbahn, K. Electron Spectroscopy for Chemical Analysis (E.S.C.A.). Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 268, (1970). Siegbahn, K. Electron Spectroscopy for Chemical Analysis (E.S.C.A.). Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 268, (1970).
47.
go back to reference Liu, H., Jiang, E. Y., Zheng, R. K. & Bai, H. L. Structure and magnetic properties of polycrystalline Fe3O4 films deposited by reactive sputtering at room temperature. Phys. Status Solidi 201, 739–744 (2004).CrossRef Liu, H., Jiang, E. Y., Zheng, R. K. & Bai, H. L. Structure and magnetic properties of polycrystalline Fe3O4 films deposited by reactive sputtering at room temperature. Phys. Status Solidi 201, 739–744 (2004).CrossRef
48.
go back to reference Vogelson, C. T. et al. Molecular coupling layers formed by reactions of epoxy resins with self-assembled carboxylate monolayers grown on the native oxide of aluminium. J. Mater. Chem. 13, 291–296 (2003).CrossRef Vogelson, C. T. et al. Molecular coupling layers formed by reactions of epoxy resins with self-assembled carboxylate monolayers grown on the native oxide of aluminium. J. Mater. Chem. 13, 291–296 (2003).CrossRef
49.
go back to reference Mohapatra, S. & Pramanik, P. Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents. Colloids Surfaces A Physicochem. Eng. Asp. 339, 35–42 (2009).CrossRef Mohapatra, S. & Pramanik, P. Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents. Colloids Surfaces A Physicochem. Eng. Asp. 339, 35–42 (2009).CrossRef
50.
go back to reference Řıhová, B. Receptor-mediated targeted drug or toxin delivery. Adv. Drug Deliv. Rev. 29, 273–289 (1998). Řıhová, B. Receptor-mediated targeted drug or toxin delivery. Adv. Drug Deliv. Rev. 29, 273–289 (1998).
51.
go back to reference Swaan, P. W. Recent Advances in Intestinal Macromolecular Drug Delivery via Receptor-Mediated Transport Pathways. Pharm. Res. 15, 826–834 (1998).CrossRef Swaan, P. W. Recent Advances in Intestinal Macromolecular Drug Delivery via Receptor-Mediated Transport Pathways. Pharm. Res. 15, 826–834 (1998).CrossRef
52.
go back to reference Cezar, G. G. et al. Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev. 16, 869–882 (2007).CrossRef Cezar, G. G. et al. Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev. 16, 869–882 (2007).CrossRef
53.
go back to reference Weitman, S. D. et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 52, 3396–401 (1992). Weitman, S. D. et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 52, 3396–401 (1992).
54.
go back to reference Ross, J. F., Chaudhuri, P. K. & Ratnam, M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73, 2432–43 (1994).CrossRef Ross, J. F., Chaudhuri, P. K. & Ratnam, M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73, 2432–43 (1994).CrossRef
55.
go back to reference Gabizon, A. et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: In vitro studies. Bioconjug. Chem. 10, 289–298 (1999).CrossRef Gabizon, A. et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: In vitro studies. Bioconjug. Chem. 10, 289–298 (1999).CrossRef
56.
go back to reference Lu, Y. & Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 54, 675–693 (2002).CrossRef Lu, Y. & Low, P. S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 54, 675–693 (2002).CrossRef
57.
go back to reference Stella, B. et al. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89, 1452–1464 (2000).CrossRef Stella, B. et al. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89, 1452–1464 (2000).CrossRef
58.
go back to reference Dántola, M. L. et al. Mechanism of photooxidation of folic acid sensitized by unconjugated pterins. Photochem. Photobiol. Sci. 9, 1604–1612 (2010).CrossRef Dántola, M. L. et al. Mechanism of photooxidation of folic acid sensitized by unconjugated pterins. Photochem. Photobiol. Sci. 9, 1604–1612 (2010).CrossRef
59.
go back to reference Chen, X., Tang, Y., Cai, B. & Fan, H. ‘One-pot’ synthesis of multifunctional GSH-CdTe quantum dots for targeted drug delivery. Nanotechnology 25, 235101 (2014).CrossRef Chen, X., Tang, Y., Cai, B. & Fan, H. ‘One-pot’ synthesis of multifunctional GSH-CdTe quantum dots for targeted drug delivery. Nanotechnology 25, 235101 (2014).CrossRef
60.
go back to reference Ravichandran, M. et al. Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics. Sci. Rep. 6, 34874 (2016).CrossRef Ravichandran, M. et al. Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics. Sci. Rep. 6, 34874 (2016).CrossRef
61.
go back to reference Honary, S., Barabadi, H., Gharaei-Fathabad, E. & Naghibi, F. Green Synthesis of Silver Nanoparticles Induced by the Fungus Penicillium citrinum. Trop. J. Pharm. Res. 12, 7–11 (2013). Honary, S., Barabadi, H., Gharaei-Fathabad, E. & Naghibi, F. Green Synthesis of Silver Nanoparticles Induced by the Fungus Penicillium citrinum. Trop. J. Pharm. Res. 12, 7–11 (2013).
62.
go back to reference Ede, S. R., Nithiyanantham, U. & Kundu, S. Enhanced catalytic and SERS activities of CTAB stabilized interconnected osmium nanoclusters. Phys. Chem. Chem. Phys. 16, 22723–22734 (2014).CrossRef Ede, S. R., Nithiyanantham, U. & Kundu, S. Enhanced catalytic and SERS activities of CTAB stabilized interconnected osmium nanoclusters. Phys. Chem. Chem. Phys. 16, 22723–22734 (2014).CrossRef
63.
go back to reference Zhang, J., Rana, S., Srivastava, R. S. & Misra, R. D. K. On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomater. 4, 40–48 (2008).CrossRef Zhang, J., Rana, S., Srivastava, R. S. & Misra, R. D. K. On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomater. 4, 40–48 (2008).CrossRef
64.
go back to reference Yuan, Q., Hein, S. & Misra, R. D. K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater. 6, 2732–2739 (2010).CrossRef Yuan, Q., Hein, S. & Misra, R. D. K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater. 6, 2732–2739 (2010).CrossRef
65.
go back to reference Pandey, S. et al. Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers. J. Mater. Chem. B 1, 1361 (2013).CrossRef Pandey, S. et al. Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers. J. Mater. Chem. B 1, 1361 (2013).CrossRef
66.
go back to reference Huang, J., Su, P., Zhao, B. & Yang, Y. Facile one-pot synthesis of β-cyclodextrin-polymer-modified Fe3O4 microspheres for stereoselective absorption of amino acid compounds. Anal. Methods 7, 2754–2761 (2015).CrossRef Huang, J., Su, P., Zhao, B. & Yang, Y. Facile one-pot synthesis of β-cyclodextrin-polymer-modified Fe3O4 microspheres for stereoselective absorption of amino acid compounds. Anal. Methods 7, 2754–2761 (2015).CrossRef
67.
go back to reference Chen, J., Wang, Y., Ding, X., Huang, Y. & Xu, K. Analytical Methods on hydroxy functional ionic liquid-modi fi ed magnetic nanoparticles. Anal. Methods 6, 8358–8367 (2014).CrossRef Chen, J., Wang, Y., Ding, X., Huang, Y. & Xu, K. Analytical Methods on hydroxy functional ionic liquid-modi fi ed magnetic nanoparticles. Anal. Methods 6, 8358–8367 (2014).CrossRef
68.
go back to reference Sanders, J. P. & Gallagher, P. K. Thermomagnetometric evidence of γ-Fe2O3 as an intermediate in the oxidation of magnetite. Thermochim. Acta 406, 241–243 (2003).CrossRef Sanders, J. P. & Gallagher, P. K. Thermomagnetometric evidence of γ-Fe2O3 as an intermediate in the oxidation of magnetite. Thermochim. Acta 406, 241–243 (2003).CrossRef
69.
go back to reference Rai, A., Prabhune, A. & Perry, C. C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 20, 6789 (2010).CrossRef Rai, A., Prabhune, A. & Perry, C. C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 20, 6789 (2010).CrossRef
70.
go back to reference Basavegowda, N., Idhayadhulla, A. & Lee, Y. R. Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Ind. Crops Prod. 52, 745–751 (2014).CrossRef Basavegowda, N., Idhayadhulla, A. & Lee, Y. R. Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Ind. Crops Prod. 52, 745–751 (2014).CrossRef
71.
go back to reference Sahoo, B. et al. Facile preparation of multifunctional hollow silica nanoparticles and their cancer specific targeting effect. Biomater. Sci. 1, 647 (2013).CrossRef Sahoo, B. et al. Facile preparation of multifunctional hollow silica nanoparticles and their cancer specific targeting effect. Biomater. Sci. 1, 647 (2013).CrossRef
72.
go back to reference Jin, H. et al. Folate-Chitosan Nanoparticles Loaded with Ursolic Acid Confer Anti-Breast Cancer Activities in vitro and in vivo. Sci. Rep. 6, 30782 (2016).CrossRef Jin, H. et al. Folate-Chitosan Nanoparticles Loaded with Ursolic Acid Confer Anti-Breast Cancer Activities in vitro and in vivo. Sci. Rep. 6, 30782 (2016).CrossRef
73.
go back to reference Shenderova, O., Hens, S. & McGuire, G. Seeding slurries based on detonation nanodiamond in DMSO. Diam. Relat. Mater. 19, 260–267 (2010).CrossRef Shenderova, O., Hens, S. & McGuire, G. Seeding slurries based on detonation nanodiamond in DMSO. Diam. Relat. Mater. 19, 260–267 (2010).CrossRef
74.
go back to reference Zhang, W., Patel, K., Schexnider, A., Banu, S. & Radadia, A. D. Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS Nano 8, 1419–28 (2014).CrossRef Zhang, W., Patel, K., Schexnider, A., Banu, S. & Radadia, A. D. Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ACS Nano 8, 1419–28 (2014).CrossRef
75.
go back to reference Wang, L. et al. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale 5, 8384 (2013).CrossRef Wang, L. et al. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale 5, 8384 (2013).CrossRef
76.
go back to reference Ricles, L. M., Nam, S. Y., Treviño, E. A., Emelianov, S. Y. & Suggs, L. J. A dual gold nanoparticle system for mesenchymal stem cell tracking. J. Mater. Chem. B 2, 8220–8230 (2014).CrossRef Ricles, L. M., Nam, S. Y., Treviño, E. A., Emelianov, S. Y. & Suggs, L. J. A dual gold nanoparticle system for mesenchymal stem cell tracking. J. Mater. Chem. B 2, 8220–8230 (2014).CrossRef
77.
go back to reference Das, M., Mishra, D., Maiti, T. K., Basak, A & Pramanik, P. Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting. Nanotechnology 19, 415101 (2008).CrossRef Das, M., Mishra, D., Maiti, T. K., Basak, A & Pramanik, P. Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting. Nanotechnology 19, 415101 (2008).CrossRef
78.
go back to reference Pandey, S. et al. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J. Mater. Chem. B 1, 4972 (2013).CrossRef Pandey, S. et al. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J. Mater. Chem. B 1, 4972 (2013).CrossRef
79.
go back to reference Kamen, B. A. & Capdevila, A. Receptor-mediated folate accumulation is regulated by the cellular folate content (5-methyltetrahydro[3H]folate binding/folate-binding factor). Cell Biol. 83, 5983–5987 (1986). Kamen, B. A. & Capdevila, A. Receptor-mediated folate accumulation is regulated by the cellular folate content (5-methyltetrahydro[3H]folate binding/folate-binding factor). Cell Biol. 83, 5983–5987 (1986).
80.
go back to reference Leamon, C. P. & Low, P. S. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. U. S. A. 88, 5572–6 (1991).CrossRef Leamon, C. P. & Low, P. S. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. U. S. A. 88, 5572–6 (1991).CrossRef
81.
go back to reference Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).CrossRef Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).CrossRef
82.
go back to reference Rybak, S. L. & Murphy, R. F. Primary cell cultures from murine kidney and heart differ in endosomal pH. J. Cell. Physiol. 176, 216–222 (1998).CrossRef Rybak, S. L. & Murphy, R. F. Primary cell cultures from murine kidney and heart differ in endosomal pH. J. Cell. Physiol. 176, 216–222 (1998).CrossRef
83.
go back to reference Scherzinger, A. L. & Hendee, W. R. Basic principles of magnetic resonance imaging--an update. West. J. Med. 143, 782–92 (1985). Scherzinger, A. L. & Hendee, W. R. Basic principles of magnetic resonance imaging--an update. West. J. Med. 143, 782–92 (1985).
84.
go back to reference Pooley, R. A. Fundamental Physics of MR ImagingRadioGraphics 25, 1087–1099 (2005).CrossRef Pooley, R. A. Fundamental Physics of MR ImagingRadioGraphics 25, 1087–1099 (2005).CrossRef
85.
go back to reference Krishnan, K. M. Advances in Magnetics Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. 46, 2523–2558 (2010). Krishnan, K. M. Advances in Magnetics Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. 46, 2523–2558 (2010).
86.
go back to reference B. D. Cullity, C. D. G., Cullity, B. D. & Graham, C. D. Introduction to magnetic materials. 550 (2011). B. D. Cullity, C. D. G., Cullity, B. D. & Graham, C. D. Introduction to magnetic materials. 550 (2011).
87.
go back to reference Néel, L. Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh. J. Phys. le Radium 11, 49–61 (1950).CrossRef Néel, L. Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh. J. Phys. le Radium 11, 49–61 (1950).CrossRef
88.
go back to reference Bettaieb, A. & Averill-Bates, D. A. Thermotolerance induced at a fever temperature of 40 degrees C protects cells against hyperthermia-induced apoptosis mediated by death receptor signalling. Biochem. Cell Biol. 86, 521–538 (2008).CrossRef Bettaieb, A. & Averill-Bates, D. A. Thermotolerance induced at a fever temperature of 40 degrees C protects cells against hyperthermia-induced apoptosis mediated by death receptor signalling. Biochem. Cell Biol. 86, 521–538 (2008).CrossRef
89.
go back to reference Meenach, S. A., Hilt, J. Z. & Anderson, K. W. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater. 6, 1039–1046 (2010).CrossRef Meenach, S. A., Hilt, J. Z. & Anderson, K. W. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater. 6, 1039–1046 (2010).CrossRef
Metadata
Title
Designing a Nanocargo with Fe3O4@Au: A Tri-pronged Mechanism for MR Imaging, Synaphic Drug-Delivery, and Apoptosis Induction in Cancer Cells
Author
Ravichandran Manisekaran
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67609-8_4