Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Introduction to Nanomedicine and Cancer Therapy

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanomedicine, the application of different nanostructures in the field of medicine which is aiming to revolutionize the health of humankind by a new developmental sector of nanopharmaceuticals [1]. The rapid evolution of nanomedicines has the huge probability to give many benefits when correlated to conventional medicines [2]. The major advantage of nanomedicine is to create a multifunctional platform using one nanostructure. Therefore, the various properties of nanostructures/NPs are exploited as tools in all aspect of medicine starting from diagnosis to treatment even at a molecular or cellular level for very rare and irremediable diseases [3]. Some of the applications of nanomedicine are as follows: drug delivery, therapies, in vivo imaging, in vitro diagnostics, biomaterials, active implants, bone substitute materials, dental restoratives, and antibiotic materials [4–6]. In the last two decades, significant progress has been made in the field of nanomedicine and nanobiotechnology, resulting in an enormous number of products. So, by the end of 2020, one-third of research patents and many start-up companies in the nanomedicine sector will engage in the biomedical applications [7]. To be specific, as of 2013, 1265 molecules are registered for clinical trials in which 789 were for nanomedicine applications or products [8]. Figure 1.1 represents the list of some of the important nanomedicine-related search terms in ClinicalTrials.​gov [9]. Therefore this proves the field of nanomedicine is booming at a faster rate. The global nanomedicine market was $1 trillion by 2015 but expected to be 100-fold in just 7 years [10].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Paras N. Prasad. Introduction to Nanomedicine and Nanobioengineering. Wiley (John Wiley & Sons, 2012). Paras N. Prasad. Introduction to Nanomedicine and Nanobioengineering. Wiley (John Wiley & Sons, 2012).
2.
go back to reference Bharali, D. J. & Mousa, S. A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther. 128, 324–335 (2010).CrossRef Bharali, D. J. & Mousa, S. A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther. 128, 324–335 (2010).CrossRef
3.
go back to reference Chen, G., Roy, I., Yang, C. & Prasad, P. N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev. 116, 2826–2885 (2016).CrossRef Chen, G., Roy, I., Yang, C. & Prasad, P. N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev. 116, 2826–2885 (2016).CrossRef
4.
go back to reference Huber, F. X. et al. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim in comparison to Alpha-BSM more bone ingrowth inside the implanted material with Ostim compared to Alpha BSM. BMC Musculoskelet. Disord. 10, 164 (2009).CrossRef Huber, F. X. et al. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim in comparison to Alpha-BSM more bone ingrowth inside the implanted material with Ostim compared to Alpha BSM. BMC Musculoskelet. Disord. 10, 164 (2009).CrossRef
5.
go back to reference Wagner, V., Husing, B., Gaisser, S. & Bock, A. K. Nanomedicine : Drivers for development and possible impacts. Eur. Comm. Jt. Res. Cent. 45–53 (2006). Wagner, V., Husing, B., Gaisser, S. & Bock, A. K. Nanomedicine : Drivers for development and possible impacts. Eur. Comm. Jt. Res. Cent. 45–53 (2006).
6.
go back to reference Webster, T. J. Projections for nanomedicine into the next decade: But is it all about pharmaceuticals? Int. J. Nanomedicine 3, (2008). Webster, T. J. Projections for nanomedicine into the next decade: But is it all about pharmaceuticals? Int. J. Nanomedicine 3, (2008).
7.
go back to reference Lee Ventola, C. The Nanomedicine Revolution: Part 3: Regulatory and Safety Challenges. Pharm. Ther. 37, 631–639 (2012). Lee Ventola, C. The Nanomedicine Revolution: Part 3: Regulatory and Safety Challenges. Pharm. Ther. 37, 631–639 (2012).
8.
go back to reference Etheridge, M. L. et al. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine Nanotechnology, Biol. Med. 9, 1–14 (2013). Etheridge, M. L. et al. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine Nanotechnology, Biol. Med. 9, 1–14 (2013).
12.
go back to reference Weissig, V., Pettinger, T. K. & Murdock, N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomedicine 9, 4357–4373 (2014).CrossRef Weissig, V., Pettinger, T. K. & Murdock, N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomedicine 9, 4357–4373 (2014).CrossRef
13.
go back to reference Bawa, R. Nanopharmaceuticals: Nanopharmaceuticals. Eur. J. Nanomedicine 3, (2010). Bawa, R. Nanopharmaceuticals: Nanopharmaceuticals. Eur. J. Nanomedicine 3, (2010).
14.
go back to reference Ventola, C. L. The nanomedicine revolution: part 2: current and future clinical applications. P T 37, 582–91 (2012). Ventola, C. L. The nanomedicine revolution: part 2: current and future clinical applications. P T 37, 582–91 (2012).
17.
go back to reference Med, I. J. & Res, N. ClinMed. 3, 1–5 (2016). Med, I. J. & Res, N. ClinMed. 3, 1–5 (2016).
18.
go back to reference Wicki, A., Witzigmann, D., Balasubramanian, V. & Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 200, 138–157 (2015).CrossRef Wicki, A., Witzigmann, D., Balasubramanian, V. & Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 200, 138–157 (2015).CrossRef
19.
go back to reference Koo, H. et al. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 44, 1018–1028 (2011).CrossRef Koo, H. et al. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 44, 1018–1028 (2011).CrossRef
20.
go back to reference Morigi, V. et al. Nanotechnology in Medicine: From Inception to Market Domination. J. Drug Deliv. 2012, 1–7 (2012).CrossRef Morigi, V. et al. Nanotechnology in Medicine: From Inception to Market Domination. J. Drug Deliv. 2012, 1–7 (2012).CrossRef
21.
go back to reference Bawa, R. Nanoparticle-based therapeutics in humans: A survey. Nanotechnol. Law Bus. 5, 135–155 (2008). Bawa, R. Nanoparticle-based therapeutics in humans: A survey. Nanotechnol. Law Bus. 5, 135–155 (2008).
22.
go back to reference Kalash, R. et al. Differences in irradiated lung gene transcription between fibrosis-prone C57BL/6NHsd and fibrosis-resistant C3H/HeNHsd mice. In Vivo 28, 147–171 (2014). Kalash, R. et al. Differences in irradiated lung gene transcription between fibrosis-prone C57BL/6NHsd and fibrosis-resistant C3H/HeNHsd mice. In Vivo 28, 147–171 (2014).
23.
go back to reference Liu, Y., Miyoshi, H. & Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007).CrossRef Liu, Y., Miyoshi, H. & Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007).CrossRef
24.
go back to reference Torchilin, V. P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9, E128–E147 (2007).CrossRef Torchilin, V. P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9, E128–E147 (2007).CrossRef
25.
go back to reference Ali, I. et al. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets 11, 135–146 (2011).CrossRef Ali, I. et al. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets 11, 135–146 (2011).CrossRef
26.
go back to reference Heidel, J. D. & Davis, M. E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28, 187–199 (2011). Heidel, J. D. & Davis, M. E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28, 187–199 (2011).
27.
go back to reference Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).CrossRef Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).CrossRef
28.
go back to reference Heath, J. R., Heath, J. R., Davis, M. E. & Davis, M. E. Nanotechnology and cancer. Annu. Rev. Med. 59, 251–65 (2008).CrossRef Heath, J. R., Heath, J. R., Davis, M. E. & Davis, M. E. Nanotechnology and cancer. Annu. Rev. Med. 59, 251–65 (2008).CrossRef
29.
go back to reference Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37 (2010).CrossRef Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol. 624, 25–37 (2010).CrossRef
30.
go back to reference Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 4, 81–89 (2014).CrossRef Kobayashi, H., Watanabe, R. & Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 4, 81–89 (2014).CrossRef
31.
go back to reference Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001).CrossRef Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001).CrossRef
32.
go back to reference Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 21, 797–802 (2010).CrossRef Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 21, 797–802 (2010).CrossRef
33.
go back to reference Brannon-Peppas, L. & Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012).CrossRef Brannon-Peppas, L. & Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012).CrossRef
34.
go back to reference Northfelt, D. W. et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. J. Clin. Oncol. 16, 2445–2451 (1998).CrossRef Northfelt, D. W. et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. J. Clin. Oncol. 16, 2445–2451 (1998).CrossRef
35.
go back to reference Schleich, N. et al. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release 194, 82–91 (2014).CrossRef Schleich, N. et al. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release 194, 82–91 (2014).CrossRef
36.
37.
go back to reference Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).CrossRef Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).CrossRef
38.
go back to reference Doane, T. L. & Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–911 (2012).CrossRef Doane, T. L. & Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–911 (2012).CrossRef
39.
go back to reference Shenhar, R. & Rotello, V. M. Nanoparticles: Scaffolds and building blocks. Acc. Chem. Res. 36, 549–561 (2003).CrossRef Shenhar, R. & Rotello, V. M. Nanoparticles: Scaffolds and building blocks. Acc. Chem. Res. 36, 549–561 (2003).CrossRef
40.
go back to reference Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, 3 (2004). Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, 3 (2004).
41.
go back to reference Boal, A. K. & Rotello, V. M. Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds. J. Am. Chem. Soc. 122, 734–735 (2000).CrossRef Boal, A. K. & Rotello, V. M. Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds. J. Am. Chem. Soc. 122, 734–735 (2000).CrossRef
42.
go back to reference Ghosh, P. S., Han, G., Erdogan, B., Rosado, O. & Rotello, V. M. Binding of nanoparticle receptors to peptide α-helices using amino acid-functionalized nanoparticles. J. Pept. Sci. 14, 134–138 (2008).CrossRef Ghosh, P. S., Han, G., Erdogan, B., Rosado, O. & Rotello, V. M. Binding of nanoparticle receptors to peptide α-helices using amino acid-functionalized nanoparticles. J. Pept. Sci. 14, 134–138 (2008).CrossRef
45.
go back to reference Decuzzi, P., Causa, F., Ferrari, M. & Netti, P. A. The effective dispersion of nanovectors within the tumor microvasculature. Ann. Biomed. Eng. 34, 633–41 (2006).CrossRef Decuzzi, P., Causa, F., Ferrari, M. & Netti, P. A. The effective dispersion of nanovectors within the tumor microvasculature. Ann. Biomed. Eng. 34, 633–41 (2006).CrossRef
46.
go back to reference Lee, S. Y., Ferrari, M. & Decuzzi, P. Shaping nano/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20, 495101 (2009).CrossRef Lee, S. Y., Ferrari, M. & Decuzzi, P. Shaping nano/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20, 495101 (2009).CrossRef
47.
go back to reference Gavze, E. & Shapiro, M. Particles in a shear flow near a solid wall: Effect of nonsphericity on forces and velocities. Int. J. Multiph. Flow 23, 155–182 (1997).MATHCrossRef Gavze, E. & Shapiro, M. Particles in a shear flow near a solid wall: Effect of nonsphericity on forces and velocities. Int. J. Multiph. Flow 23, 155–182 (1997).MATHCrossRef
48.
go back to reference Gentile, F. et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, 2312–8 (2008).CrossRef Gentile, F. et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, 2312–8 (2008).CrossRef
49.
go back to reference Toy, R., Hayden, E., Shoup, C., Baskaran, H. & Karathanasis, E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22, 115101 (2011).CrossRef Toy, R., Hayden, E., Shoup, C., Baskaran, H. & Karathanasis, E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22, 115101 (2011).CrossRef
51.
go back to reference Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007). Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).
52.
go back to reference Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 4930–4 (2006).CrossRef Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 4930–4 (2006).CrossRef
53.
go back to reference Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307–5314 (2006).CrossRef Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307–5314 (2006).CrossRef
54.
go back to reference Sharma, G. et al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 147, 408–12 (2010).CrossRef Sharma, G. et al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 147, 408–12 (2010).CrossRef
55.
go back to reference Decuzzi, P., Lee, S., Bhushan, B. & Ferrari, M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33, 179–90 (2005).CrossRef Decuzzi, P., Lee, S., Bhushan, B. & Ferrari, M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33, 179–90 (2005).CrossRef
56.
go back to reference Park, J. & Butler, J. E. Analysis of the Migration of Rigid Polymers and Nanorods in a Rotating Viscometric Flow. Macromolecules 43, 2535–2543 (2010).CrossRef Park, J. & Butler, J. E. Analysis of the Migration of Rigid Polymers and Nanorods in a Rotating Viscometric Flow. Macromolecules 43, 2535–2543 (2010).CrossRef
57.
go back to reference Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond). 9, 121–34 (2014).CrossRef Toy, R., Peiris, P. M., Ghaghada, K. B. & Karathanasis, E. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond). 9, 121–34 (2014).CrossRef
58.
go back to reference Doshi, N. et al. Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks. J. Control. Release 146, 196–200 (2010).CrossRef Doshi, N. et al. Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks. J. Control. Release 146, 196–200 (2010).CrossRef
59.
go back to reference Murphy, C. J. Peer Reviewed: Optical Sensing with Quantum Dots. Anal. Chem. 74, 520 A-526 A (2002). Murphy, C. J. Peer Reviewed: Optical Sensing with Quantum Dots. Anal. Chem. 74, 520 A-526 A (2002).
60.
go back to reference Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2004).CrossRef Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2004).CrossRef
61.
go back to reference Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41, 1578–1586 (2008).CrossRef Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41, 1578–1586 (2008).CrossRef
62.
go back to reference Jana, N. R. et al. Design and development of quantum dots and other nanoparticles based cellular imaging probe. Phys. Chem. Chem. Phys. 13, 385–396 (2011).CrossRef Jana, N. R. et al. Design and development of quantum dots and other nanoparticles based cellular imaging probe. Phys. Chem. Chem. Phys. 13, 385–396 (2011).CrossRef
63.
go back to reference Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol. 624, 343–57 (2010).CrossRef Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol. 624, 343–57 (2010).CrossRef
64.
go back to reference Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science (80). 271, (1996). Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science (80). 271, (1996).
65.
go back to reference Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–44 (2005).CrossRef Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–44 (2005).CrossRef
66.
go back to reference Huang, X., Neretina, S. & El-Sayed, M. A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 21, 4880–4910 (2009).CrossRef Huang, X., Neretina, S. & El-Sayed, M. A. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 21, 4880–4910 (2009).CrossRef
67.
go back to reference Handbook of Nanophase and Nanostructured Materials. (Kluwer Academic Publishers, 2003). doi:10.1007/0-387-23814-X Handbook of Nanophase and Nanostructured Materials. (Kluwer Academic Publishers, 2003). doi:10.1007/0-387-23814-X
68.
go back to reference Lue, J. T. A review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids 62, 1599–1612 (2001).CrossRef Lue, J. T. A review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids 62, 1599–1612 (2001).CrossRef
69.
go back to reference Jeong, U., Teng, X., Wang, Y., Yang, H. & Xia, Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007).CrossRef Jeong, U., Teng, X., Wang, Y., Yang, H. & Xia, Y. Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19, 33–60 (2007).CrossRef
70.
go back to reference De, M., Ghosh, P. S. & Rotello, V. M. Applications of Nanoparticles in Biology. Adv. Mater. 1003, 4225–4241 (2008).CrossRef De, M., Ghosh, P. S. & Rotello, V. M. Applications of Nanoparticles in Biology. Adv. Mater. 1003, 4225–4241 (2008).CrossRef
71.
go back to reference Saha, K., Bajaj, A., Duncan, B. & Rotello, V. M. Beauty is skin deep: A surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small 7, 1903–1918 (2011).CrossRef Saha, K., Bajaj, A., Duncan, B. & Rotello, V. M. Beauty is skin deep: A surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small 7, 1903–1918 (2011).CrossRef
72.
go back to reference Hirsch, L. R. et al. Metal nanoshells. Ann. Biomed. Eng. 34, 15–22 (2006).CrossRef Hirsch, L. R. et al. Metal nanoshells. Ann. Biomed. Eng. 34, 15–22 (2006).CrossRef
73.
go back to reference Law, W. C. et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5, 1302–1310 (2009).CrossRef Law, W. C. et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5, 1302–1310 (2009).CrossRef
74.
go back to reference Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K. & Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 42, 224001 (2009).CrossRef Pankhurst, Q. A., Thanh, N. T. K., Jones, S. K. & Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 42, 224001 (2009).CrossRef
75.
go back to reference Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).CrossRef Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).CrossRef
76.
go back to reference Lauterbur, P. C. C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973). Lauterbur, P. C. C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973).
77.
go back to reference Elmaoğlu, M. & Çelik, A. in MRI Handbook 7–23 (Springer US, 2011). Elmaoğlu, M. & Çelik, A. in MRI Handbook 7–23 (Springer US, 2011).
78.
go back to reference John P Ridgway, Cardiovascular magnetic resonance physics for clinicians: part I. Journal of Cardiovascular Magnetic Resonance 12, 71 (2010).CrossRef John P Ridgway, Cardiovascular magnetic resonance physics for clinicians: part I. Journal of Cardiovascular Magnetic Resonance 12, 71 (2010).CrossRef
80.
go back to reference Elmaoğlu, M. & Çelik, A. in MRI Handbook 25–46 (Springer US, 2011). Elmaoğlu, M. & Çelik, A. in MRI Handbook 25–46 (Springer US, 2011).
81.
go back to reference Zhang, Y., Lin, J. D., Vijayaragavan, V., Bhakoo, K. K. & Tan, T. T. Y. Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012).CrossRef Zhang, Y., Lin, J. D., Vijayaragavan, V., Bhakoo, K. K. & Tan, T. T. Y. Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012).CrossRef
82.
go back to reference Cheng, K. et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009).CrossRef Cheng, K. et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009).CrossRef
83.
go back to reference Klasson, A. et al. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol. Imaging 3, 106–111 (2008).CrossRef Klasson, A. et al. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media Mol. Imaging 3, 106–111 (2008).CrossRef
84.
go back to reference Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 1, 35–40 (2011). Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 1, 35–40 (2011).
85.
go back to reference Law, W. C. et al. Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J. Phys. Chem. C 112, 7972–7977 (2008).CrossRef Law, W. C. et al. Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J. Phys. Chem. C 112, 7972–7977 (2008).CrossRef
86.
go back to reference Erogbogbo, F. et al. Biocompatible magnetofluorescent probes: Luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano 4, 5131–5138 (2010).CrossRef Erogbogbo, F. et al. Biocompatible magnetofluorescent probes: Luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano 4, 5131–5138 (2010).CrossRef
87.
go back to reference Lai, C. W. et al. Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4, 218–224 (2008).CrossRef Lai, C. W. et al. Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: A facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small 4, 218–224 (2008).CrossRef
88.
89.
go back to reference Ma, Y. et al. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 23, 815–822 (2013).CrossRef Ma, Y. et al. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 23, 815–822 (2013).CrossRef
90.
go back to reference Alric, C. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 130, 5908–5915 (2008).CrossRef Alric, C. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 130, 5908–5915 (2008).CrossRef
91.
go back to reference Kalender, W. A. X-ray computed tomography. Phys. Med. Biol. 51, R29–R43 (2006).CrossRef Kalender, W. A. X-ray computed tomography. Phys. Med. Biol. 51, R29–R43 (2006).CrossRef
92.
go back to reference Popovtzer, R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int. J. Nanomedicine 6, 2859 (2011).CrossRef Popovtzer, R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int. J. Nanomedicine 6, 2859 (2011).CrossRef
93.
go back to reference Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).CrossRef Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).CrossRef
94.
go back to reference Xu, C. et al. Au–Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chemie Int. Ed. 47, 173–176 (2008).CrossRef Xu, C. et al. Au–Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes. Angew. Chemie Int. Ed. 47, 173–176 (2008).CrossRef
95.
go back to reference Zhou, B. et al. Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl. Mater. Interfaces 6, 17190–17199 (2014).CrossRef Zhou, B. et al. Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl. Mater. Interfaces 6, 17190–17199 (2014).CrossRef
96.
go back to reference Liu, Y. et al. Hybrid BaYbF5 nanoparticles: novel binary contrast agent for high-resolution in vivo X-ray computed tomography angiography. Adv. Healthc. mater. 1, 461–6 (2012).CrossRef Liu, Y. et al. Hybrid BaYbF5 nanoparticles: novel binary contrast agent for high-resolution in vivo X-ray computed tomography angiography. Adv. Healthc. mater. 1, 461–6 (2012).CrossRef
97.
go back to reference Ingvaldsen, J. E. & Gulla, J. A. Context-aware user-driven news recommendation. CEUR Workshop Proceedings 1542, (John Wiley & Sons, Inc., 2015). Ingvaldsen, J. E. & Gulla, J. A. Context-aware user-driven news recommendation. CEUR Workshop Proceedings 1542, (John Wiley & Sons, Inc., 2015).
98.
go back to reference Orringer, D. a et al. Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin. Pharmacol. Ther. 85, 531–534 (2009).CrossRef Orringer, D. a et al. Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin. Pharmacol. Ther. 85, 531–534 (2009).CrossRef
99.
go back to reference Orringer, D. A. et al. The brain tumor window model: A combined cranial window and implanted glioma model for evaluating iIntraoperative contrast agents. Neurosurgery 66, 736–743 (2010).CrossRef Orringer, D. A. et al. The brain tumor window model: A combined cranial window and implanted glioma model for evaluating iIntraoperative contrast agents. Neurosurgery 66, 736–743 (2010).CrossRef
100.
go back to reference Pezacki, J. P. et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7, 137–145 (2011).CrossRef Pezacki, J. P. et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7, 137–145 (2011).CrossRef
101.
go back to reference Koole, R. et al. Magnetic quantum dots for multimodal imaging. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 1, 475–491 (2009). Koole, R. et al. Magnetic quantum dots for multimodal imaging. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 1, 475–491 (2009).
102.
go back to reference Michalet, X. & Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80). 307, 538–545 (2005). Michalet, X. & Pinaud, F. F. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science (80). 307, 538–545 (2005).
103.
go back to reference Swami, A. et al. in Drug Delivery 9–30 (Springer US, 2012). doi:https://doi.org/10.1007/978-1-4614-2305-8 Swami, A. et al. in Drug Delivery 9–30 (Springer US, 2012). doi:https://​doi.​org/​10.​1007/​978-1-4614-2305-8
104.
go back to reference Pridgen, E. M., Langer, R. & Farokhzad, O. C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond). 2, 669–680 (2007).CrossRef Pridgen, E. M., Langer, R. & Farokhzad, O. C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond). 2, 669–680 (2007).CrossRef
105.
go back to reference Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 71, 431–444 (2009).CrossRef Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 71, 431–444 (2009).CrossRef
106.
go back to reference Medeiros, S. F., Santos, A. M., Fessi, H. & Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403, 139–161 (2011).CrossRef Medeiros, S. F., Santos, A. M., Fessi, H. & Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403, 139–161 (2011).CrossRef
107.
go back to reference Katz, J. S. & Burdick, J. A. Light-responsive biomaterials: Development and applications. Macromol. Biosci. 10, 339–348 (2010).CrossRef Katz, J. S. & Burdick, J. A. Light-responsive biomaterials: Development and applications. Macromol. Biosci. 10, 339–348 (2010).CrossRef
108.
go back to reference De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008).CrossRef De Jong, W. H. & Borm, P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 3, 133–149 (2008).CrossRef
109.
go back to reference Probst, C. E., Zrazhevskiy, P., Bagalkot, V. & Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65, 703–718 (2013).CrossRef Probst, C. E., Zrazhevskiy, P., Bagalkot, V. & Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65, 703–718 (2013).CrossRef
110.
go back to reference Cheng, Z. et al. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials 35, 6359–6368 (2014).CrossRef Cheng, Z. et al. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials 35, 6359–6368 (2014).CrossRef
111.
go back to reference Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003).CrossRef Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003).CrossRef
113.
go back to reference Van Loo, G. et al. The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differ. 9, 1031–42 (2002).CrossRef Van Loo, G. et al. The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differ. 9, 1031–42 (2002).CrossRef
114.
go back to reference Kumar, C. S. S. R. & Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011).CrossRef Kumar, C. S. S. R. & Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011).CrossRef
115.
go back to reference Goldstein, L. S., Dewhirst, M. W., Repacholi, M. & Kheifets, L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int. J. Hyperth. 19, 373–384 (2003).CrossRef Goldstein, L. S., Dewhirst, M. W., Repacholi, M. & Kheifets, L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int. J. Hyperth. 19, 373–384 (2003).CrossRef
116.
go back to reference Raaphorst, G. P., Freeman, M. L. & Dewey, W. C. Radiosensitivity and Recovery from Radiation Damage in Cultured CHO Cells Exposed to Hyperthermia at 42.5 or 45.5°C. Radiat. Res. 79, 390 (1979).CrossRef Raaphorst, G. P., Freeman, M. L. & Dewey, W. C. Radiosensitivity and Recovery from Radiation Damage in Cultured CHO Cells Exposed to Hyperthermia at 42.5 or 45.5°C. Radiat. Res. 79, 390 (1979).CrossRef
117.
go back to reference Habash, R. W. Y., Bansal, R., Krewski, D. & Alhafid, H. T. Thermal therapy, Part 2: Hyperthermia techniques. Crit. Rev. Biomed. Eng. 34, 491–542 (2006).CrossRef Habash, R. W. Y., Bansal, R., Krewski, D. & Alhafid, H. T. Thermal therapy, Part 2: Hyperthermia techniques. Crit. Rev. Biomed. Eng. 34, 491–542 (2006).CrossRef
118.
go back to reference Cabuy, E. Hyperthermia in cancer treatment Hyperthermia in Cancer Treatment. Neoplasma 41, 269–276 (2016). Cabuy, E. Hyperthermia in cancer treatment Hyperthermia in Cancer Treatment. Neoplasma 41, 269–276 (2016).
119.
go back to reference GILCHRIST, R. K. et al. Selective inductive heating of lymph nodes. 146, 596–606 (1957). GILCHRIST, R. K. et al. Selective inductive heating of lymph nodes. 146, 596–606 (1957).
120.
go back to reference McCarthy, J. R. & Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008).CrossRef McCarthy, J. R. & Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008).CrossRef
121.
go back to reference Dutz, S. & Hergt, R. Magnetic particle hyperthermia-A promising tumour therapy? Nanotechnology 25, 452001 (2014).CrossRef Dutz, S. & Hergt, R. Magnetic particle hyperthermia-A promising tumour therapy? Nanotechnology 25, 452001 (2014).CrossRef
122.
go back to reference Bornstein, B. A. et al. Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma. Int. J. Radiat. Oncol. 25, 79–85 (1993).CrossRef Bornstein, B. A. et al. Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma. Int. J. Radiat. Oncol. 25, 79–85 (1993).CrossRef
123.
go back to reference Jordan, A. et al. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 9, 51–68 (1993).CrossRef Jordan, A. et al. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 9, 51–68 (1993).CrossRef
124.
go back to reference Jeyadevan, B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J. Ceram. Soc. Japan 118, 391–401 (2010).CrossRef Jeyadevan, B. Present status and prospects of magnetite nanoparticles-based hyperthermia. J. Ceram. Soc. Japan 118, 391–401 (2010).CrossRef
125.
go back to reference Suto, M. et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493–1496 (2009).CrossRef Suto, M. et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493–1496 (2009).CrossRef
126.
go back to reference Kötitz, R., Weitschies, W., Trahms, L. & Semmler, W. Investigation of Brownian and Néel relaxation in magnetic fluids. J. Magn. Magn. Mater. 201, 102–104 (1999). Kötitz, R., Weitschies, W., Trahms, L. & Semmler, W. Investigation of Brownian and Néel relaxation in magnetic fluids. J. Magn. Magn. Mater. 201, 102–104 (1999).
127.
go back to reference Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).CrossRef Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).CrossRef
128.
go back to reference Hergt, R. et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998).CrossRef Hergt, R. et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998).CrossRef
129.
go back to reference Jean-Paul Fortin, et al. Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia. J. Am. Chem. Soc., 129 (9), 2628–2635 (2007).CrossRef Jean-Paul Fortin, et al. Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia. J. Am. Chem. Soc., 129 (9), 2628–2635 (2007).CrossRef
130.
go back to reference Fortin, J. P., Gazeau, F. & Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37, 223–228 (2008).CrossRef Fortin, J. P., Gazeau, F. & Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37, 223–228 (2008).CrossRef
131.
go back to reference Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).CrossRef Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).CrossRef
132.
go back to reference Schütt, W. et al. Applications of Magnetic Targeting in Diagnosis and Therapy-Possibilities and Limitations: A Mini-Review. Hybridoma 16, 109–117 (1997).CrossRef Schütt, W. et al. Applications of Magnetic Targeting in Diagnosis and Therapy-Possibilities and Limitations: A Mini-Review. Hybridoma 16, 109–117 (1997).CrossRef
133.
go back to reference Derfus, A. M. et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936 (2007).CrossRef Derfus, A. M. et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936 (2007).CrossRef
134.
go back to reference Kost, J., Wolfrum, J. & Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 21, 1367–1373 (1987).CrossRef Kost, J., Wolfrum, J. & Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 21, 1367–1373 (1987).CrossRef
135.
go back to reference Zonghuan Lu, et al. Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles. Langmuir, 21 (5), 2042–2050 (2005).CrossRef Zonghuan Lu, et al. Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles. Langmuir, 21 (5), 2042–2050 (2005).CrossRef
136.
go back to reference Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).CrossRef Chu, K. F. & Dupuy, D. E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14, 199–208 (2014).CrossRef
137.
go back to reference Pereira, P. L. Actual role of radiofrequency ablation of liver metastases. Eur. Radiol. 17, 2062–70 (2007).CrossRef Pereira, P. L. Actual role of radiofrequency ablation of liver metastases. Eur. Radiol. 17, 2062–70 (2007).CrossRef
138.
go back to reference Nikfarjam, M., Muralidharan, V. & Christophi, C. Mechanisms of Focal Heat Destruction of Liver Tumors. J. Surg. Res. 127, 208–223 (2005).CrossRef Nikfarjam, M., Muralidharan, V. & Christophi, C. Mechanisms of Focal Heat Destruction of Liver Tumors. J. Surg. Res. 127, 208–223 (2005).CrossRef
139.
go back to reference Ahmed, M., Brace, C. L., Lee, F. T. & Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 258, 351–69 (2011).CrossRef Ahmed, M., Brace, C. L., Lee, F. T. & Goldberg, S. N. Principles of and advances in percutaneous ablation. Radiology 258, 351–69 (2011).CrossRef
140.
go back to reference Den Brok, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br. J. Cancer 95, 896–905 (2006).CrossRef Den Brok, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br. J. Cancer 95, 896–905 (2006).CrossRef
141.
go back to reference Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192-203 (2010).CrossRef Lubner, M. G., Brace, C. L., Hinshaw, J. L. & Lee, F. T. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 21, S192-203 (2010).CrossRef
142.
go back to reference Wright, A. S., Lee, F. T. & Mahvi, D. M. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann. Surg. Oncol. 10, 275–83 (2003).CrossRef Wright, A. S., Lee, F. T. & Mahvi, D. M. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann. Surg. Oncol. 10, 275–83 (2003).CrossRef
143.
go back to reference Yeh, Y. C., Creran, B. & Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4, 1871–80 (2012).CrossRef Yeh, Y. C., Creran, B. & Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4, 1871–80 (2012).CrossRef
144.
go back to reference Wang, C. et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. 131, 8824–8832 (2009).CrossRef Wang, C. et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. 131, 8824–8832 (2009).CrossRef
145.
go back to reference Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P. & Williams, M. E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004).CrossRef Lyon, J. L., Fleming, D. A., Stone, M. B., Schiffer, P. & Williams, M. E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 4, 719–723 (2004).CrossRef
146.
go back to reference Xu, C., Wang, B. & Sun, S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).CrossRef Xu, C., Wang, B. & Sun, S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 131, 4216–4217 (2009).CrossRef
147.
go back to reference Kim, D., Kim, J. W., Jeong, Y. Y. & Jon, S. Antibiofouling Polymer Coated Gold@Iron Oxide Nanoparticle (GION) as a Dual Contrast Agent for CT and MRI. Bull. Korean Chem. Soc. 30, 1855–1857 (2009).CrossRef Kim, D., Kim, J. W., Jeong, Y. Y. & Jon, S. Antibiofouling Polymer Coated Gold@Iron Oxide Nanoparticle (GION) as a Dual Contrast Agent for CT and MRI. Bull. Korean Chem. Soc. 30, 1855–1857 (2009).CrossRef
148.
go back to reference Lim, J. K., Majetich, S. A. & Tilton, R. D. Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir 25, 13384–13393 (2009).CrossRef Lim, J. K., Majetich, S. A. & Tilton, R. D. Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir 25, 13384–13393 (2009).CrossRef
149.
go back to reference Wang, L. et al. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 109, 21593–21601 (2005).CrossRef Wang, L. et al. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 109, 21593–21601 (2005).CrossRef
150.
go back to reference Lim, J. & Majetich, S. A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 8, 98–113 (2013).CrossRef Lim, J. & Majetich, S. A. Composite magnetic-plasmonic nanoparticles for biomedicine: Manipulation and imaging. Nano Today 8, 98–113 (2013).CrossRef
151.
go back to reference Jin, X. et al. Facile deposition of continuous gold shells on Tween-20 modified Fe3O4 superparticles. J. Mater. Chem. B 1, 1921–1925 (2013).CrossRef Jin, X. et al. Facile deposition of continuous gold shells on Tween-20 modified Fe3O4 superparticles. J. Mater. Chem. B 1, 1921–1925 (2013).CrossRef
Metadata
Title
Introduction to Nanomedicine and Cancer Therapy
Author
Ravichandran Manisekaran
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67609-8_1