Skip to main content
Top

2020 | OriginalPaper | Chapter

Detection of One Dimensional Anomalies Using a Vector-Based Convolutional Autoencoder

Authors : Qien Yu, Muthusubash Kavitha, Takio Kurita

Published in: Pattern Recognition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Anomaly detection is important to significant real life entities such as network intrusion and credit card fraud. Existing anomaly detection methods were partially learned the features, which is not appropriate for accurate detection of anomalies. In this study we proposed vector-based convolutional autoencoder (V-CAE) for one dimensional anomaly detection. The core of our model is a linear autoencoder, which is used to construct a low-dimensional manifold of feature vectors for normal data. At the same time, we used vector-based convolutional neural network (V-CNN) to extract the features from vector data before and after the linear autoencoder that makes the model learned deep features for efficient anomaly detection. This unsupervised learning method used only normal data in the training phase. We used the combined abnormal score calculated from two reconstruction errors: (i) error between the input and output of the whole architecture and (ii) error between the input and output of the linear encoder. Compared with the nine state-of-the-arts methods, our proposed V-CAE shows effective and stable results of AUC with 0.996 in estimating anomalies based on several benchmark datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dufrenois, F.: A one-class kernel fisher criterion for outlier detection. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 982–994 (2015)MathSciNetCrossRef Dufrenois, F.: A one-class kernel fisher criterion for outlier detection. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 982–994 (2015)MathSciNetCrossRef
2.
go back to reference Potluri, S., Diedrich, C.: Accelerated deep neural networks for enhanced intrusion detection system. In: 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE Press, New York (2016) Potluri, S., Diedrich, C.: Accelerated deep neural networks for enhanced intrusion detection system. In: 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE Press, New York (2016)
3.
go back to reference Kim, J., Shin, N., Jo, S.-Y., Kim, S.-H.: Method of intrusion detection using deep neural network. In: 4th International Conference on Big Data and Smart Computing, pp. 313–316. IEEE Press, New York (2017) Kim, J., Shin, N., Jo, S.-Y., Kim, S.-H.: Method of intrusion detection using deep neural network. In: 4th International Conference on Big Data and Smart Computing, pp. 313–316. IEEE Press, New York (2017)
4.
go back to reference Alom, M.Z., Bontupalli, V., Taha, T.M.: Intrusion detection using deep belief networks. In: National Aerospace and Electronics Conference, pp. 339–344. IEEE Press, New York (2015) Alom, M.Z., Bontupalli, V., Taha, T.M.: Intrusion detection using deep belief networks. In: National Aerospace and Electronics Conference, pp. 339–344. IEEE Press, New York (2015)
5.
go back to reference Qu, F., Zhang, J.-T., Shao, Z.-T., Qi, S.-Z.: Intrusion detection model based on deep belief. In: the 2017 VI International Conference on Network, Communication and Computing, pp. 97–101. ACM Press, New York(2017) Qu, F., Zhang, J.-T., Shao, Z.-T., Qi, S.-Z.: Intrusion detection model based on deep belief. In: the 2017 VI International Conference on Network, Communication and Computing, pp. 97–101. ACM Press, New York(2017)
6.
go back to reference Kavitha, M.S., Kurita, T., Park, S.-Y., Chien, S.-I., Bae, J.-S., Ahn, B.-C.: Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells. PLoS ONE 12(12), 1–18 (2017)CrossRef Kavitha, M.S., Kurita, T., Park, S.-Y., Chien, S.-I., Bae, J.-S., Ahn, B.-C.: Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells. PLoS ONE 12(12), 1–18 (2017)CrossRef
7.
go back to reference Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for miningoutliers from large data sets. ACM SIGMOD Rec. 29(2), 427–438 (2000)CrossRef Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for miningoutliers from large data sets. ACM SIGMOD Rec. 29(2), 427–438 (2000)CrossRef
8.
go back to reference Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29(2), 93–104 (2000)CrossRef Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29(2), 93–104 (2000)CrossRef
9.
go back to reference Kriegel, H.P., Zimek, A.: Angle-based outlier detection in high-dimensional data. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 444–452. ACM Press, New York (2008) Kriegel, H.P., Zimek, A.: Angle-based outlier detection in high-dimensional data. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 444–452. ACM Press, New York (2008)
10.
go back to reference Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: International Conference on Data Mining, pp. 413–422. IEEE Press, New York (2008) Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: International Conference on Data Mining, pp. 413–422. IEEE Press, New York (2008)
11.
go back to reference He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9–10), 1641–1650 (2003) CrossRef He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9–10), 1641–1650 (2003) CrossRef
12.
go back to reference Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5), 363–387 (2012)MathSciNetCrossRef Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5), 363–387 (2012)MathSciNetCrossRef
13.
go back to reference Ro, K., Zou, C., Wang, Z., Yin, G.: Outlier detection for high-dimensionaldata. Biometrika 102(3), 589–599 (2015)MathSciNetCrossRef Ro, K., Zou, C., Wang, Z., Yin, G.: Outlier detection for high-dimensionaldata. Biometrika 102(3), 589–599 (2015)MathSciNetCrossRef
14.
go back to reference Pang, G., Cao, L., Chen, L., Liu, H.: Learning homophily couplings from Non-IID data for joint feature selection and noise-resilient outlier detection. In: 26th International Joint Conference on Artificial Intelligence, pp. 2585–2591. Morgan Kaufmann Press, San Francisco (2017) Pang, G., Cao, L., Chen, L., Liu, H.: Learning homophily couplings from Non-IID data for joint feature selection and noise-resilient outlier detection. In: 26th International Joint Conference on Artificial Intelligence, pp. 2585–2591. Morgan Kaufmann Press, San Francisco (2017)
15.
go back to reference Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Discov. 29(3), 626–688 (2015)MathSciNetCrossRef Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Discov. 29(3), 626–688 (2015)MathSciNetCrossRef
16.
go back to reference Radovanović, M., Nanopoulos, A., Ivanović, M.: Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans. Knowl. Data Eng. 27(5), 1369–1382 (2015)CrossRef Radovanović, M., Nanopoulos, A., Ivanović, M.: Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans. Knowl. Data Eng. 27(5), 1369–1382 (2015)CrossRef
18.
go back to reference Khreich, W., Khosravifar, B., Hamou-Lhadj, A., Talhi, C.: An anomaly detection system based on variable N-gram features and one-class SVM. Inf. Softw. Technol. 91, 186–197 (2017)CrossRef Khreich, W., Khosravifar, B., Hamou-Lhadj, A., Talhi, C.: An anomaly detection system based on variable N-gram features and one-class SVM. Inf. Softw. Technol. 91, 186–197 (2017)CrossRef
19.
go back to reference Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recogn. Lett. 20(11–13), 1191–1199 (1999)CrossRef Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recogn. Lett. 20(11–13), 1191–1199 (1999)CrossRef
20.
go back to reference Yang, X., Latecki, L.J., Pokrajac, D.: Outlier detection with globally optimal exemplar-based GMM. In: SIAM International Conference on Data Mining, pp. 145–154. SIAM Press, Philadelphia (2009) Yang, X., Latecki, L.J., Pokrajac, D.: Outlier detection with globally optimal exemplar-based GMM. In: SIAM International Conference on Data Mining, pp. 145–154. SIAM Press, Philadelphia (2009)
21.
go back to reference Liu, F.-T., Ting, K.-M., Zhou, Z.-H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)CrossRef Liu, F.-T., Ting, K.-M., Zhou, Z.-H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)CrossRef
22.
go back to reference Sun, G., Cong, Y., Xu, X.: Active lifelong learning with “watchdog”. In: The 32th AAAI Conference on Artificial Intelligence, pp. 4107–4114. AAAI Press, Palo Alto (2018) Sun, G., Cong, Y., Xu, X.: Active lifelong learning with “watchdog”. In: The 32th AAAI Conference on Artificial Intelligence, pp. 4107–4114. AAAI Press, Palo Alto (2018)
23.
go back to reference Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining Table of Contents, pp. 157–166. ACM Press, New York (2005) Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining Table of Contents, pp. 157–166. ACM Press, New York (2005)
24.
go back to reference Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000)CrossRef Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000)CrossRef
25.
go back to reference Yeung, D.-Y., Chow, C.: Parzen-window network intrusion detectors. In: Object Recognition Supported by User Interaction for Service Robots, vol. 4, no. 4, pp. 385–388 (2002) Yeung, D.-Y., Chow, C.: Parzen-window network intrusion detectors. In: Object Recognition Supported by User Interaction for Service Robots, vol. 4, no. 4, pp. 385–388 (2002)
26.
go back to reference Adler, A., Elad, M., Hel-Or, Y., Rivlin, E.: Sparse coding with anomaly detection. Signal Process. Syst. 79(2), 179–188 (2015)CrossRef Adler, A., Elad, M., Hel-Or, Y., Rivlin, E.: Sparse coding with anomaly detection. Signal Process. Syst. 79(2), 179–188 (2015)CrossRef
27.
go back to reference Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011), pp. 3449–3456. IEEE Press, New York (2011) Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011), pp. 3449–3456. IEEE Press, New York (2011)
28.
go back to reference Radovanovi, M., Nanopoulos, A., Ivanovi, M.: Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans. Knowl. Data Eng. 27(5), 1369–1382 (2015)CrossRef Radovanovi, M., Nanopoulos, A., Ivanovi, M.: Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans. Knowl. Data Eng. 27(5), 1369–1382 (2015)CrossRef
29.
go back to reference You, C., Robinson, D.P., Vidal, R.: Provable self-representation based outlier detection in a union of subspaces. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 4323–4332. IEEE Press, New York (2017) You, C., Robinson, D.P., Vidal, R.: Provable self-representation based outlier detection in a union of subspaces. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 4323–4332. IEEE Press, New York (2017)
30.
go back to reference Hou, D.-D., Cong, Y., Sun, G., Liu, J.: Anomaly detection via adaptive greedy model. Neurocomputing 330, 369–379 (2019)CrossRef Hou, D.-D., Cong, Y., Sun, G., Liu, J.: Anomaly detection via adaptive greedy model. Neurocomputing 330, 369–379 (2019)CrossRef
Metadata
Title
Detection of One Dimensional Anomalies Using a Vector-Based Convolutional Autoencoder
Authors
Qien Yu
Muthusubash Kavitha
Takio Kurita
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-41299-9_40

Premium Partner