Skip to main content
Top

2020 | OriginalPaper | Chapter

Early Diagnosis of Alzheimer’s Disease Based on Selective Kernel Network with Spatial Attention

Authors : Huanhuan Ji, Zhenbing Liu, Wei Qi Yan, Reinhard Klette

Published in: Pattern Recognition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder which leads to memory and behaviour impairment. Early discovery and diagnosis can delay the progress of this disease. In this paper, we propose a new deep learning method called selective kernel network with attention for early diagnosis of AD using magnetic resonance imaging. Generally, deep learning methods for high-accuracy recognition are based on structure of deep neural networks by stacking a myriad of convolutional layers in the model. In this paper, the structure of SKANet is constructed similarly to that of ResNeXt by repeating residual blocks with the same topology and group convolution for saving computational costs. Different from ResNeXt, the primary convolution is replaced by using selective kernel convolution to adaptively adjust the receptive field based on imported information. Then, attention mechanism is added to the bottom of the block to emphasize on important features and suppress unnecessary ones for more accurate representation of the network. The block is termed as selective kernel with attention block that consists of a sequence of operations followed by the order: a convolution with kernel size \(1\times 1\), a selective kernel convolution, a convolution with kernel size \(1\times 1\), and spatial attention mechanism. The effectiveness of this proposed model is verified based on the Alzheimer’s Disease Neuroimaging Initiative dataset. Our experimental results show superiority of the proposed model for the early diagnosis of AD. The classification accuracy of AD and mild cognitive impairment reaches up to \(98.82\%\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D.: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145, 137–165 (2017)CrossRef Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D.: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145, 137–165 (2017)CrossRef
2.
go back to reference Arribas, J., Calhoun, V., Adali, T.: A automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data. IEEE Trans. Bio-med. Eng. 57(12), 2850–2860 (2010)CrossRef Arribas, J., Calhoun, V., Adali, T.: A automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data. IEEE Trans. Bio-med. Eng. 57(12), 2850–2860 (2010)CrossRef
3.
go back to reference Brookmeyer, R., Johnson, E., Ziegler-Graham, K.: Forecasting the global burden of Alzheimer’s disease. J. Alzheimers Assoc. 3(3), 186–191 (2007)CrossRef Brookmeyer, R., Johnson, E., Ziegler-Graham, K.: Forecasting the global burden of Alzheimer’s disease. J. Alzheimers Assoc. 3(3), 186–191 (2007)CrossRef
4.
go back to reference Billones, D., Demetria, D., Hostallero, D.: DemNet: a convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment. In: TENCON. IEEE, Singapore (2016) Billones, D., Demetria, D., Hostallero, D.: DemNet: a convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment. In: TENCON. IEEE, Singapore (2016)
6.
go back to reference Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR. IEEE, Piscataway (2016) Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR. IEEE, Piscataway (2016)
7.
go back to reference Chyzhykand, D., Grana, M., Savio, A., Maiora, J.: Hybrid dendritic computing with kernel-LICA applied to Alzheimer’s disease detection in MRI. Neurocomputing 75(1), 72–77 (2012)CrossRef Chyzhykand, D., Grana, M., Savio, A., Maiora, J.: Hybrid dendritic computing with kernel-LICA applied to Alzheimer’s disease detection in MRI. Neurocomputing 75(1), 72–77 (2012)CrossRef
8.
go back to reference Cuingnet, R., Gerardin, E., Tessieras, J.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)CrossRef Cuingnet, R., Gerardin, E., Tessieras, J.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2), 766–781 (2011)CrossRef
9.
go back to reference Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6(2), 67–77 (2010)CrossRef Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6(2), 67–77 (2010)CrossRef
10.
go back to reference Gupta, A., Ayhan, M., Maida, A.: Natural image bases to represent neuroimaging data. In: ICML 2013, USA, pp. 987–994 (2013) Gupta, A., Ayhan, M., Maida, A.: Natural image bases to represent neuroimaging data. In: ICML 2013, USA, pp. 987–994 (2013)
11.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE, Piscataway (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE, Piscataway (2016)
12.
go back to reference Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141. IEEE, Piscataway (2018) Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141. IEEE, Piscataway (2018)
13.
go back to reference Huang, G., Liu, Z., Laurens, M.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708. IEEE, Piscataway (2017) Huang, G., Liu, Z., Laurens, M.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708. IEEE, Piscataway (2017)
14.
go back to reference Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20(11), 1254–1259 (1998)CrossRef Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20(11), 1254–1259 (1998)CrossRef
15.
go back to reference Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)CrossRef Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)CrossRef
16.
go back to reference Ji, H., Liu, Z., Yan, W., Klette, R.: Early diagnosis of Alzheimer’s disease using deep learning. In: ICCCV, Korea (2019) Ji, H., Liu, Z., Yan, W., Klette, R.: Early diagnosis of Alzheimer’s disease using deep learning. In: ICCCV, Korea (2019)
17.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012) Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)
18.
go back to reference Larochelle, H., Hinton, G.: Learning to combine foveal glimpses with a third-order Boltzmann machine. In: NIPS (2010) Larochelle, H., Hinton, G.: Learning to combine foveal glimpses with a third-order Boltzmann machine. In: NIPS (2010)
19.
go back to reference Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
20.
go back to reference Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: CVPR, pp. 510–519. IEEE, Piscataway (2019) Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: CVPR, pp. 510–519. IEEE, Piscataway (2019)
21.
go back to reference Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolution network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. PAMI 12, 1–14 (2018) Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolution network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. PAMI 12, 1–14 (2018)
22.
go back to reference Litjens, G., Kooi, T., Bejnordi, B., Setio, A., Ciompi, F., Ghafoorian, M.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G., Kooi, T., Bejnordi, B., Setio, A., Ciompi, F., Ghafoorian, M.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
23.
go back to reference Liu, F., Wee, C., Chen, H., Shen, D.: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84, 466–475 (2014)CrossRef Liu, F., Wee, C., Chen, H., Shen, D.: Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84, 466–475 (2014)CrossRef
24.
go back to reference Liu, M., Zhang, D., Chen, S., Xue, H.: Joint binary classifier learning for ECOC-based multi-class classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2335–2341 (2016)CrossRef Liu, M., Zhang, D., Chen, S., Xue, H.: Joint binary classifier learning for ECOC-based multi-class classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2335–2341 (2016)CrossRef
25.
go back to reference Liu, M., Zhang, D., Shen, D.: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 36(5), 1847–1865 (2015)CrossRef Liu, M., Zhang, D., Shen, D.: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 36(5), 1847–1865 (2015)CrossRef
26.
go back to reference Liu, Z., Xu, T., Ma, C., Yang, H.: T-test based Alzheimer’s disease diagnosis with multi-feature in MRIs. Multimedia Tools Appl. 77(22), 29687–29703 (2018)CrossRef Liu, Z., Xu, T., Ma, C., Yang, H.: T-test based Alzheimer’s disease diagnosis with multi-feature in MRIs. Multimedia Tools Appl. 77(22), 29687–29703 (2018)CrossRef
27.
go back to reference Lu, J., Yan, W., Nguyen, M.: Human behaviour recognition using deep learning. In: AVSS (2018) Lu, J., Yan, W., Nguyen, M.: Human behaviour recognition using deep learning. In: AVSS (2018)
28.
go back to reference Mnih, V., Heess, N., Graves, A.: Recurrent models of visual attention. In: NIPS (2014) Mnih, V., Heess, N., Graves, A.: Recurrent models of visual attention. In: NIPS (2014)
29.
go back to reference Ortiz, A., Munilla, J., Gorriz, M.: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int. J. Neural Syst. 26(7), 1650025 (2016)CrossRef Ortiz, A., Munilla, J., Gorriz, M.: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int. J. Neural Syst. 26(7), 1650025 (2016)CrossRef
30.
go back to reference Ortiz, A., Munilla, J., Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J.: Learning longitudinal MRI patterns by SICE and deep learning: assessing the Alzheimer’s disease progression. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 413–424. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_36CrossRef Ortiz, A., Munilla, J., Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J.: Learning longitudinal MRI patterns by SICE and deep learning: assessing the Alzheimer’s disease progression. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 413–424. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-60964-5_​36CrossRef
31.
go back to reference Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C.: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage 155, 530–548 (2017)CrossRef Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C.: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage 155, 530–548 (2017)CrossRef
32.
go back to reference Sarraf, S., Tofighi, G.: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. In: Future Technologies Conference, pp. 816–820. IEEE, San Francisco (2016) Sarraf, S., Tofighi, G.: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. In: Future Technologies Conference, pp. 816–820. IEEE, San Francisco (2016)
33.
go back to reference Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002)CrossRef Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002)CrossRef
34.
go back to reference Spillmann, L., Dresp-Langley, B., Tseng, C.: Beyond the classical receptive field: the effect of contextual stimuli. J. Vis. 15(9), 7 (2015)CrossRef Spillmann, L., Dresp-Langley, B., Tseng, C.: Beyond the classical receptive field: the effect of contextual stimuli. J. Vis. 15(9), 7 (2015)CrossRef
35.
go back to reference Suk, H., Lee, S., Shen, D.: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct. Funct. 221(15), 2569–2587 (2016)CrossRef Suk, H., Lee, S., Shen, D.: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct. Funct. 221(15), 2569–2587 (2016)CrossRef
36.
go back to reference Suk, H., Lee, S., Shen, D.: Deep ensemble learning of sparse regression models for brain disease diagnosis. Med. Image Anal. 37, 101–113 (2017)CrossRef Suk, H., Lee, S., Shen, D.: Deep ensemble learning of sparse regression models for brain disease diagnosis. Med. Image Anal. 37, 101–113 (2017)CrossRef
37.
go back to reference Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9. IEEE, Piscataway (2015) Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9. IEEE, Piscataway (2015)
38.
go back to reference Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826. IEEE, Piscataway (2016) Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826. IEEE, Piscataway (2016)
39.
go back to reference Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI, San Francisco (2017) Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI, San Francisco (2017)
40.
go back to reference Wang, F., et al.: Residual attention network for image classification. In: CVPR, pp. 3156–3164. IEEE, Piscataway (2017) Wang, F., et al.: Residual attention network for image classification. In: CVPR, pp. 3156–3164. IEEE, Piscataway (2017)
41.
go back to reference Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 1492–1500. IEEE, Piscataway (2017) Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 1492–1500. IEEE, Piscataway (2017)
42.
go back to reference You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. In: CVPR, pp. 4651–4659. IEEE, USA (2016) You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. In: CVPR, pp. 4651–4659. IEEE, USA (2016)
Metadata
Title
Early Diagnosis of Alzheimer’s Disease Based on Selective Kernel Network with Spatial Attention
Authors
Huanhuan Ji
Zhenbing Liu
Wei Qi Yan
Reinhard Klette
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-41299-9_39

Premium Partner