Skip to main content
Top
Published in: Journal of Materials Science 21/2017

17-07-2017 | Review

Determination of material properties of thin films and coatings using indentation tests: a review

Authors: Wu Wen, Adib A. Becker, Wei Sun

Published in: Journal of Materials Science | Issue 21/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a review of the mechanical characterisation of thin film and coated systems using indentation tests. The potential in assessing mechanical properties of films and coatings using indentation tests has received a great deal of attention since this knowledge is vital for predicting their performance. The relevant theoretical background is discussed. Experimental work, numerical studies and data interpretation techniques for indentation on single bulk materials and thin films are discussed. Surface conditions, indentation depths and indentation size effects for indentation tests on thin films and coated systems are discussed. Data interpretation methods for indentation on films and coated systems are reviewed with a discussion on their limitations. Other studies in this field concerning the substrate effects and critical indentation depth ratios are also discussed. Suggestions for future experimental work and data interpretation are provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef
2.
go back to reference Vaidyanathan R, Dao M, Ravichandran G, Suresh S (2001) Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater 49:3781–3789CrossRef Vaidyanathan R, Dao M, Ravichandran G, Suresh S (2001) Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater 49:3781–3789CrossRef
3.
go back to reference Su C, Anand L (2006) Plane strain indentation of a Zr-based metallic glass: experiments and numerical simulation. Acta Mater 54:179–189CrossRef Su C, Anand L (2006) Plane strain indentation of a Zr-based metallic glass: experiments and numerical simulation. Acta Mater 54:179–189CrossRef
4.
go back to reference Zhang J, Niebur GL, Ovaert TC (2008) Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation. J Biomech 41:267–275CrossRef Zhang J, Niebur GL, Ovaert TC (2008) Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation. J Biomech 41:267–275CrossRef
5.
go back to reference Misra RDK, Venkatsurya P, Wu KM, Karjalainen LP (2013) Ultrahigh strength martensite-austenite dual-phase steels with ultrafine structure: the response to indentation experiments. Mater Sci Eng A 560:693–699CrossRef Misra RDK, Venkatsurya P, Wu KM, Karjalainen LP (2013) Ultrahigh strength martensite-austenite dual-phase steels with ultrafine structure: the response to indentation experiments. Mater Sci Eng A 560:693–699CrossRef
6.
go back to reference Olofinjana AO, Bell JM, Jamting AK (2000) Evaluation of the mechanical properties of sol–gel-deposited titania films using ultra-micro-indentation method. Wear 241:174–179CrossRef Olofinjana AO, Bell JM, Jamting AK (2000) Evaluation of the mechanical properties of sol–gel-deposited titania films using ultra-micro-indentation method. Wear 241:174–179CrossRef
7.
go back to reference Stauss S, Schwaller P, Bucaille JL, Rabe R, Rohr L, Michler J, Blank E (2003) Determining the stress-strain behaviour of small devices by nanoindentation in combination with inverse methods. Microelectron Eng 67–68:818–825CrossRef Stauss S, Schwaller P, Bucaille JL, Rabe R, Rohr L, Michler J, Blank E (2003) Determining the stress-strain behaviour of small devices by nanoindentation in combination with inverse methods. Microelectron Eng 67–68:818–825CrossRef
8.
go back to reference Hu Y, Shen L, Yang H, Wang M, Liu T, Liang T, Zhang J (2006) Nanoindentation studies on nylon 11/clay nanocomposites. Polym Testing 25:492–497CrossRef Hu Y, Shen L, Yang H, Wang M, Liu T, Liang T, Zhang J (2006) Nanoindentation studies on nylon 11/clay nanocomposites. Polym Testing 25:492–497CrossRef
9.
go back to reference Harsono E, Swaddiwudhipong S, Liu ZS, Shen L (2011) Numerical and experimental indentation tests considering size effects. Int J Solids Struct 48:972–978CrossRef Harsono E, Swaddiwudhipong S, Liu ZS, Shen L (2011) Numerical and experimental indentation tests considering size effects. Int J Solids Struct 48:972–978CrossRef
10.
go back to reference Karimzadeh A, Ayatollahi MR, Alizadeh M (2014) Finite element simulation of nano-indentation experiment on aluminum 1100. Comput Mater Sci 81:595–600CrossRef Karimzadeh A, Ayatollahi MR, Alizadeh M (2014) Finite element simulation of nano-indentation experiment on aluminum 1100. Comput Mater Sci 81:595–600CrossRef
11.
go back to reference Kot M, Rakowski W, Lackner JM, Major Ł (2013) Analysis of spherical indentations of coating-substrate systems: experiments and finite element modeling. Mater Des 43:99–111CrossRef Kot M, Rakowski W, Lackner JM, Major Ł (2013) Analysis of spherical indentations of coating-substrate systems: experiments and finite element modeling. Mater Des 43:99–111CrossRef
12.
go back to reference Li W, Huang C, Yu M, Liao H (2013) Investigation on mechanical property of annealed copper particles and cold sprayed copper coating by a micro-indentation testing. Mater Des 46:219–226CrossRef Li W, Huang C, Yu M, Liao H (2013) Investigation on mechanical property of annealed copper particles and cold sprayed copper coating by a micro-indentation testing. Mater Des 46:219–226CrossRef
13.
go back to reference Piana LA, Pérez REA, Souza RM, Kunrath AO, Strohaecker TR (2005) Numerical and experimental analyses on the indentation of coated systems with substrates with different mechanical properties. Thin Solid Films 491:197–203CrossRef Piana LA, Pérez REA, Souza RM, Kunrath AO, Strohaecker TR (2005) Numerical and experimental analyses on the indentation of coated systems with substrates with different mechanical properties. Thin Solid Films 491:197–203CrossRef
14.
go back to reference Venkateswaran P, Xu ZH, Li X, Reynolds AP (2009) Determination of mechanical properties of Al–Mg alloys dissimilar friction stir welded interface by indentation methods. J Mater Sci 44:4140–4147. doi:10.1007/s10853-009-3607-4 CrossRef Venkateswaran P, Xu ZH, Li X, Reynolds AP (2009) Determination of mechanical properties of Al–Mg alloys dissimilar friction stir welded interface by indentation methods. J Mater Sci 44:4140–4147. doi:10.​1007/​s10853-009-3607-4 CrossRef
16.
go back to reference Okayasu M, Takasu S, Mizuno M (2012) Relevance of instrumented nano-indentation for the assessment of the mechanical properties of eutectic crystals and α-Al grain in cast aluminum alloys. J Mater Sci 47:241–250. doi:10.1007/s10853-011-5791-2 CrossRef Okayasu M, Takasu S, Mizuno M (2012) Relevance of instrumented nano-indentation for the assessment of the mechanical properties of eutectic crystals and α-Al grain in cast aluminum alloys. J Mater Sci 47:241–250. doi:10.​1007/​s10853-011-5791-2 CrossRef
17.
18.
go back to reference Cheng W, Wang M, Xu C, Zhang J, Liang W, You B, Nie K (2015) Microstructure characterization and indentation hardness testing behavior of Mg–8Sn–xAl–1Zn alloys. J Mater Sci 30:1043–1048. doi:10.1007/s11595-015-1270-y Cheng W, Wang M, Xu C, Zhang J, Liang W, You B, Nie K (2015) Microstructure characterization and indentation hardness testing behavior of Mg–8Sn–xAl–1Zn alloys. J Mater Sci 30:1043–1048. doi:10.​1007/​s11595-015-1270-y
19.
go back to reference Nakayama T, Sakaue K, Ogawa T, Kobayashi Y, Teratani T (2009) Evaluations of mechanical properties of DLC film by indentation method and the effect of substrate. Zairyo J Soc Mater Sci 58:833–840CrossRef Nakayama T, Sakaue K, Ogawa T, Kobayashi Y, Teratani T (2009) Evaluations of mechanical properties of DLC film by indentation method and the effect of substrate. Zairyo J Soc Mater Sci 58:833–840CrossRef
20.
go back to reference Bhushan B, Kulkarni AV, Bonin W, Wyrobek JT (1996) Nanoindentation and picoindentation measurements using a capacitive transducer system in atomic force microscopy. Philos Mag A 74:1117–1128CrossRef Bhushan B, Kulkarni AV, Bonin W, Wyrobek JT (1996) Nanoindentation and picoindentation measurements using a capacitive transducer system in atomic force microscopy. Philos Mag A 74:1117–1128CrossRef
21.
go back to reference Newey D, Wilkins MA, Pollock HM (1982) An ultra-low-load penetration hardness tester. J Phys E Sci Instrum 15:119–122CrossRef Newey D, Wilkins MA, Pollock HM (1982) An ultra-low-load penetration hardness tester. J Phys E Sci Instrum 15:119–122CrossRef
22.
go back to reference Bell TJ, Bendeli A, Field JS, Swain MV, Thwaite EG (1992) The determination of surface plastic and elastic properties by ultra micro-indentation. Metrologia 28:463–469CrossRef Bell TJ, Bendeli A, Field JS, Swain MV, Thwaite EG (1992) The determination of surface plastic and elastic properties by ultra micro-indentation. Metrologia 28:463–469CrossRef
23.
go back to reference Randall NX, Consiglio R (2000) Nanoscratch tester for thin film mechanical properties characterization. Rev Sci Instrum 71:2796–2799CrossRef Randall NX, Consiglio R (2000) Nanoscratch tester for thin film mechanical properties characterization. Rev Sci Instrum 71:2796–2799CrossRef
24.
go back to reference Kang JJ, Becker AA, Sun W (2012) determining elastic-plastic properties from indentation data obtained from finite element simulations and experimental results. Int J Mech Sci 62:34–46CrossRef Kang JJ, Becker AA, Sun W (2012) determining elastic-plastic properties from indentation data obtained from finite element simulations and experimental results. Int J Mech Sci 62:34–46CrossRef
25.
go back to reference Kang JJ, Becker AA, Sun W (2013) Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 229:1–14 Kang JJ, Becker AA, Sun W (2013) Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 229:1–14
26.
go back to reference Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S (2001) Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 49:3899–3918CrossRef Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S (2001) Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 49:3899–3918CrossRef
27.
go back to reference Zhao M, Ogasawara N, Chiba N, Chen X (2006) A new approach to measure the elastic–plastic properties of bulk materials using spherical indentation. Acta Mater 54:23–32CrossRef Zhao M, Ogasawara N, Chiba N, Chen X (2006) A new approach to measure the elastic–plastic properties of bulk materials using spherical indentation. Acta Mater 54:23–32CrossRef
28.
go back to reference Ogasawara N, Chiba N, Chen X (2006) Measuring the plastic properties of bulk materials by single indentation test. Scripta Mater 54:65–70CrossRef Ogasawara N, Chiba N, Chen X (2006) Measuring the plastic properties of bulk materials by single indentation test. Scripta Mater 54:65–70CrossRef
29.
go back to reference Antunes JM, Menezes LF, Fernandes JV (2006) Three-dimensional numerical simulation of Vickers indentation tests. Int J Solids Struct 43:784–806CrossRef Antunes JM, Menezes LF, Fernandes JV (2006) Three-dimensional numerical simulation of Vickers indentation tests. Int J Solids Struct 43:784–806CrossRef
30.
go back to reference Luo J, Lin J, Dean TA (2006) A study on the determination of mechanical properties of a power law material by its indentation force–depth curve. Phil Mag 86:2881–2905CrossRef Luo J, Lin J, Dean TA (2006) A study on the determination of mechanical properties of a power law material by its indentation force–depth curve. Phil Mag 86:2881–2905CrossRef
31.
go back to reference Gamonpilas C, Busso EP (2007) Characterization of elastoplastic properties based on inverse analysis and finite element modeling of two separate indenters. J Eng Mater Technol 129:603–608CrossRef Gamonpilas C, Busso EP (2007) Characterization of elastoplastic properties based on inverse analysis and finite element modeling of two separate indenters. J Eng Mater Technol 129:603–608CrossRef
32.
go back to reference Luo J, Lin J (2007) A Study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters. Int J Solids Struct 44:5803–5817CrossRef Luo J, Lin J (2007) A Study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters. Int J Solids Struct 44:5803–5817CrossRef
33.
go back to reference Le MQ (2008) A Computational study on the instrumented sharp indentations with dual indenters. Int J Solids Struct 45:2818–2835CrossRef Le MQ (2008) A Computational study on the instrumented sharp indentations with dual indenters. Int J Solids Struct 45:2818–2835CrossRef
34.
go back to reference Farrissey LM, McHugh PE (2005) Determination of elastic and plastic material properties using indentation: development of method and application to a thin surface coating. Mater Sci Eng A 399:254–266CrossRef Farrissey LM, McHugh PE (2005) Determination of elastic and plastic material properties using indentation: development of method and application to a thin surface coating. Mater Sci Eng A 399:254–266CrossRef
35.
go back to reference Rico A, Gómez-García J, Múnez CJ, Poza P, Utrilla V (2009) Mechanical properties of thermal barrier coatings after isothermal oxidation. Surf Coat Technol 203:2307–2314CrossRef Rico A, Gómez-García J, Múnez CJ, Poza P, Utrilla V (2009) Mechanical properties of thermal barrier coatings after isothermal oxidation. Surf Coat Technol 203:2307–2314CrossRef
36.
go back to reference Łatka L, Chicot D, Cattini A, Pawłowski L, Ambroziak A (2013) Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surf Coat Technol 220:131–139CrossRef Łatka L, Chicot D, Cattini A, Pawłowski L, Ambroziak A (2013) Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surf Coat Technol 220:131–139CrossRef
37.
go back to reference Fischer-Cripps AC (2006) Critical Review of analysis and interpretation of nanoindentation test data. Surf Coat Technol 200:4153–4165CrossRef Fischer-Cripps AC (2006) Critical Review of analysis and interpretation of nanoindentation test data. Surf Coat Technol 200:4153–4165CrossRef
38.
go back to reference Pharr GM, Oliver WC, Brotzen FR (1992) On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation. J Mater Res 7:613–617CrossRef Pharr GM, Oliver WC, Brotzen FR (1992) On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation. J Mater Res 7:613–617CrossRef
39.
go back to reference Love AEH (1929) The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Character 228:377–420CrossRef Love AEH (1929) The stress produced in a semi-infinite solid by pressure on part of the boundary. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Character 228:377–420CrossRef
40.
go back to reference Love AEH (1939) Boussinesq’s problem for a rigid cone. Q J Math 10:161–175CrossRef Love AEH (1939) Boussinesq’s problem for a rigid cone. Q J Math 10:161–175CrossRef
41.
go back to reference Boussinesq J (1885) Applications des Potentiels a l’etude de equilibre dt du mouvement des solides elastiques. Gauthier-Villars, Paris Boussinesq J (1885) Applications des Potentiels a l’etude de equilibre dt du mouvement des solides elastiques. Gauthier-Villars, Paris
42.
go back to reference Harding JW, Sneddon IN (1945) The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Math Proc Cambridge Philos Soc 41:16–26CrossRef Harding JW, Sneddon IN (1945) The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Math Proc Cambridge Philos Soc 41:16–26CrossRef
43.
go back to reference Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57CrossRef Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57CrossRef
44.
go back to reference Hay JC, Bolshakov A, Pharr GM (1999) A critical examination of the fundamental relations used in the analysis of nanoindentation data. J Mater Res 14:2296–2305CrossRef Hay JC, Bolshakov A, Pharr GM (1999) A critical examination of the fundamental relations used in the analysis of nanoindentation data. J Mater Res 14:2296–2305CrossRef
45.
go back to reference Malzbender J, de With G, den Toonder J (2000) The P-h2 relationship in indentation. J Mater Res 15:1209–1212CrossRef Malzbender J, de With G, den Toonder J (2000) The P-h2 relationship in indentation. J Mater Res 15:1209–1212CrossRef
46.
go back to reference Malzbender J (2002) Indentation load-displacement curve, plastic deformation, and energy. J Mater Res 17:502–511CrossRef Malzbender J (2002) Indentation load-displacement curve, plastic deformation, and energy. J Mater Res 17:502–511CrossRef
47.
go back to reference Sneddon IN (1951) Fourier transforms. McGraw-Hill Book Company, New York, pp 450–467 Sneddon IN (1951) Fourier transforms. McGraw-Hill Book Company, New York, pp 450–467
48.
go back to reference ISO (2015) ISO 14577-1:2015, Metallic materials—instrumented indentation test for hardness and materials parameters—part 1: test method. ISO, Geneva ISO (2015) ISO 14577-1:2015, Metallic materials—instrumented indentation test for hardness and materials parameters—part 1: test method. ISO, Geneva
49.
go back to reference Vanlandingham MR (2003) Review of instrumented indentation. J Res Nat Inst Stand Technol 108:249–265CrossRef Vanlandingham MR (2003) Review of instrumented indentation. J Res Nat Inst Stand Technol 108:249–265CrossRef
50.
go back to reference Sakharova NA, Fernandes JV, Antunes JM, Oliveira MC (2009) Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int J Solids Struct 46:1095–1104CrossRef Sakharova NA, Fernandes JV, Antunes JM, Oliveira MC (2009) Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int J Solids Struct 46:1095–1104CrossRef
51.
go back to reference Zhang J, Sakai M (2004) Geometrical effect of pyramidal indenters on the elastoplastic contact behaviors of ceramics and metals. Mater Sci Eng A 381:62–70CrossRef Zhang J, Sakai M (2004) Geometrical effect of pyramidal indenters on the elastoplastic contact behaviors of ceramics and metals. Mater Sci Eng A 381:62–70CrossRef
52.
go back to reference Field JS, Swain MV (1993) A simple predictive model for spherical indentation. J Mater Res 8:297–306CrossRef Field JS, Swain MV (1993) A simple predictive model for spherical indentation. J Mater Res 8:297–306CrossRef
53.
go back to reference Francis HA (1976) Phenomenological analysis of plastic spherical indentation. ASME J Eng Mater Technol 98:272–281CrossRef Francis HA (1976) Phenomenological analysis of plastic spherical indentation. ASME J Eng Mater Technol 98:272–281CrossRef
54.
go back to reference Le MQ (2012) Material characterization by instrumented spherical indentation. Mech Mater 46:42–56CrossRef Le MQ (2012) Material characterization by instrumented spherical indentation. Mech Mater 46:42–56CrossRef
55.
go back to reference Riester L, Blau PJ, Lara-Curzio E, Breder K (2000) Nanoindentation with a Knoop indenter. Thin Solid Films 377:635–639CrossRef Riester L, Blau PJ, Lara-Curzio E, Breder K (2000) Nanoindentation with a Knoop indenter. Thin Solid Films 377:635–639CrossRef
56.
go back to reference Riester L, Bell TJ, Fischer-Cripps AC (2001) Analysis of depth-sensing indentation tests with a Knoop indenter. J Mater Res 16:1660–1667CrossRef Riester L, Bell TJ, Fischer-Cripps AC (2001) Analysis of depth-sensing indentation tests with a Knoop indenter. J Mater Res 16:1660–1667CrossRef
57.
go back to reference Bolshakov A, Pharr GM (1998) Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13:1049–1058CrossRef Bolshakov A, Pharr GM (1998) Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13:1049–1058CrossRef
58.
go back to reference Begley MR, Evans AG, Hutchinson JW (1999) spherical impression of thin elastic films on elastic–plastic substrates. Int J Solids Struct 36:2773–2788CrossRef Begley MR, Evans AG, Hutchinson JW (1999) spherical impression of thin elastic films on elastic–plastic substrates. Int J Solids Struct 36:2773–2788CrossRef
59.
go back to reference Gamonpilas C, Busso EP (2004) On the effect of substrate properties on the indentation behaviour of coated systems. Mater Sci Eng A 380:52–61CrossRef Gamonpilas C, Busso EP (2004) On the effect of substrate properties on the indentation behaviour of coated systems. Mater Sci Eng A 380:52–61CrossRef
60.
go back to reference Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51:5159–5172CrossRef Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51:5159–5172CrossRef
61.
go back to reference Chen J, Lu L, Lu K (2006) Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Mater 54:1913–1918CrossRef Chen J, Lu L, Lu K (2006) Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Mater 54:1913–1918CrossRef
62.
go back to reference Maier V, Durst K, Mueller J, Backes B, Höppel HW, Göken M (2011) Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J Mater Res 26:1421–1430CrossRef Maier V, Durst K, Mueller J, Backes B, Höppel HW, Göken M (2011) Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J Mater Res 26:1421–1430CrossRef
63.
go back to reference Misra RD, Zhang Z, Jia Z, Venkatsurya PK, Somani MC, Karjalainen LP (2012) Nanoscale deformation experiments on the strain rate sensitivity of phase reversion induced nanograined/ultrafine-grained austenitic stainless steels and comparison with the coarse-grained counterpart. Mater Sci Eng A 548:161–174CrossRef Misra RD, Zhang Z, Jia Z, Venkatsurya PK, Somani MC, Karjalainen LP (2012) Nanoscale deformation experiments on the strain rate sensitivity of phase reversion induced nanograined/ultrafine-grained austenitic stainless steels and comparison with the coarse-grained counterpart. Mater Sci Eng A 548:161–174CrossRef
64.
go back to reference Lorenz D, Zeckzer A, Hilpert U, Grau P, Johansen H, Leipner HS (2003) Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Physical Rev B 67(172101):1–4 Lorenz D, Zeckzer A, Hilpert U, Grau P, Johansen H, Leipner HS (2003) Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Physical Rev B 67(172101):1–4
65.
go back to reference Durst K, Backes B, Franke O, Göken M (2006) Indentation size effect in metallic materials: modeling strength from pop-into macroscopic hardness using geometrically necessary dislocations. Acta Mater 54:2547–2555CrossRef Durst K, Backes B, Franke O, Göken M (2006) Indentation size effect in metallic materials: modeling strength from pop-into macroscopic hardness using geometrically necessary dislocations. Acta Mater 54:2547–2555CrossRef
66.
go back to reference Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Rep 44:91–150CrossRef Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Rep 44:91–150CrossRef
67.
go back to reference Cheng CM, Cheng YT (1999) Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters”. J Mater Res 14:3467–3473CrossRef Cheng CM, Cheng YT (1999) Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters”. J Mater Res 14:3467–3473CrossRef
68.
go back to reference Capehart TW, Cheng YT (2003) Determining constitutive models from conical indentation: sensitivity analysis. J Mater Res 18:827–832CrossRef Capehart TW, Cheng YT (2003) Determining constitutive models from conical indentation: sensitivity analysis. J Mater Res 18:827–832CrossRef
69.
go back to reference Ogasawara N, Chiba N, Chen X (2005) Representative strain of indentation analysis. J Mater Res 20:2225–2234CrossRef Ogasawara N, Chiba N, Chen X (2005) Representative strain of indentation analysis. J Mater Res 20:2225–2234CrossRef
70.
go back to reference Huber N, Tsagrakis I, Tsakmakis C (2000) Determination of constitutive properties of thin metallic films on substrates by spherical indentation using neural networks. Int J Solids Struct 37:6499–6516CrossRef Huber N, Tsagrakis I, Tsakmakis C (2000) Determination of constitutive properties of thin metallic films on substrates by spherical indentation using neural networks. Int J Solids Struct 37:6499–6516CrossRef
71.
go back to reference Kang JJ, Becker AA, Sun W (2011) A combined dimensional analysis and optimization approach for determining elastic-plastic properties from indentation tests. J Strain Anal Eng Des 46:749–759CrossRef Kang JJ, Becker AA, Sun W (2011) A combined dimensional analysis and optimization approach for determining elastic-plastic properties from indentation tests. J Strain Anal Eng Des 46:749–759CrossRef
72.
go back to reference Atkins AG, Tabor D (1965) Plastic indentation in metals with cones. J Mech Phys Solids 13:149–164CrossRef Atkins AG, Tabor D (1965) Plastic indentation in metals with cones. J Mech Phys Solids 13:149–164CrossRef
73.
go back to reference Antunes JM, Fernandes JV, Menezes LF, Chaparro BM (2007) A new approach for reverse analyses in depth-sensing indentation using numerical simulation. Acta Mater 55:69–81CrossRef Antunes JM, Fernandes JV, Menezes LF, Chaparro BM (2007) A new approach for reverse analyses in depth-sensing indentation using numerical simulation. Acta Mater 55:69–81CrossRef
74.
go back to reference Tunvisut K, O’Dowd NP, Busso EP (2000) Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests. Int J Solids Struct 38:335–351CrossRef Tunvisut K, O’Dowd NP, Busso EP (2000) Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests. Int J Solids Struct 38:335–351CrossRef
75.
go back to reference ISO (2008) NPR-ISO/TR 29381, Metallic materials—measurement of mechanical properties by an instrumented indentation test—indentation tensile properties. ISO, Geneva ISO (2008) NPR-ISO/TR 29381, Metallic materials—measurement of mechanical properties by an instrumented indentation test—indentation tensile properties. ISO, Geneva
76.
go back to reference Huber N, Tsakmakis C (1999) Determination of constitutive properties from spherical indentation data using neural networks. Part ii: plasticity with nonlinear isotropic and kinematic hardening. J Mech Phys Solids 47:1589–1607CrossRef Huber N, Tsakmakis C (1999) Determination of constitutive properties from spherical indentation data using neural networks. Part ii: plasticity with nonlinear isotropic and kinematic hardening. J Mech Phys Solids 47:1589–1607CrossRef
77.
go back to reference Chen X, Ogasawara N, Zhao M, Chiba N (2007) On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials. J Mech Phys Solids 55:1618–1660CrossRef Chen X, Ogasawara N, Zhao M, Chiba N (2007) On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials. J Mech Phys Solids 55:1618–1660CrossRef
78.
go back to reference Moussa C, Hernot X, Bartier O, Delattre G, Mauvoisin G (2014) Evaluation of the tensile properties of a material through spherical indentation: definition of an average representative strain and a confidence domain. J Mater Sci 49:592–603. doi:10.1007/s10853-013-7739-1 CrossRef Moussa C, Hernot X, Bartier O, Delattre G, Mauvoisin G (2014) Evaluation of the tensile properties of a material through spherical indentation: definition of an average representative strain and a confidence domain. J Mater Sci 49:592–603. doi:10.​1007/​s10853-013-7739-1 CrossRef
79.
go back to reference ISO (2007) ISO 14577-4:2016 Metallic materials—instrumented indentation test for hardness and materials parameters—part 4: test method for metallic and non-metallic coatings. ISO, Geneva ISO (2007) ISO 14577-4:2016 Metallic materials—instrumented indentation test for hardness and materials parameters—part 4: test method for metallic and non-metallic coatings. ISO, Geneva
81.
go back to reference Chicot D, Gil L, Silva K, Roudet F, Puchi-Cabrera ES, Staia MH, Teer DG (2010) Thin film hardness determination using indentation loading curve modelling. Thin Solid Films 518:5565–5571CrossRef Chicot D, Gil L, Silva K, Roudet F, Puchi-Cabrera ES, Staia MH, Teer DG (2010) Thin film hardness determination using indentation loading curve modelling. Thin Solid Films 518:5565–5571CrossRef
82.
go back to reference Sun Y, Bell T, Zheng S (1995) Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation. Thin Solid Films 258:198–204CrossRef Sun Y, Bell T, Zheng S (1995) Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation. Thin Solid Films 258:198–204CrossRef
83.
go back to reference Knapp JA, Follstaedt DM, Barbour JC, Myers SM (1997) Finite element modeling of nanoindentation for determining the mechanical properties of implanted layers and thin films. Nucl Instrum Methods Phys Res, Sect B 127–128:935–939CrossRef Knapp JA, Follstaedt DM, Barbour JC, Myers SM (1997) Finite element modeling of nanoindentation for determining the mechanical properties of implanted layers and thin films. Nucl Instrum Methods Phys Res, Sect B 127–128:935–939CrossRef
84.
go back to reference Knapp JA, Follstaedt DM, Myers SM, Barbour JC, Friedmann TA, Ager JW, Monteiro OR, Brown IG (1998) Finite element modeling of nanoindentation for evaluating mechanical properties of MEMS materials. Surf Coat Technol 103–104:268–275CrossRef Knapp JA, Follstaedt DM, Myers SM, Barbour JC, Friedmann TA, Ager JW, Monteiro OR, Brown IG (1998) Finite element modeling of nanoindentation for evaluating mechanical properties of MEMS materials. Surf Coat Technol 103–104:268–275CrossRef
85.
go back to reference Ma DJ, Xu KW, He JW (1998) Numerical simulation for determining the mechanical properties of thin metal films using depth-sensing indentation technique. Thin Solid Films 323:183–187CrossRef Ma DJ, Xu KW, He JW (1998) Numerical simulation for determining the mechanical properties of thin metal films using depth-sensing indentation technique. Thin Solid Films 323:183–187CrossRef
86.
go back to reference Lichinchi M, Lenardi C, Haupt J, Vitali R (1998) Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312:240–248CrossRef Lichinchi M, Lenardi C, Haupt J, Vitali R (1998) Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312:240–248CrossRef
87.
go back to reference Tang K (1999) Determination of coating mechanical properties using spherical indenters. Thin Solid Films 355–356:263–269CrossRef Tang K (1999) Determination of coating mechanical properties using spherical indenters. Thin Solid Films 355–356:263–269CrossRef
88.
go back to reference Panich N, Sun Y (2004) Effect of penetration depth on indentation response of soft coatings on hard substrates: a finite element analysis. Surf Coat Technol 182:342–350CrossRef Panich N, Sun Y (2004) Effect of penetration depth on indentation response of soft coatings on hard substrates: a finite element analysis. Surf Coat Technol 182:342–350CrossRef
89.
go back to reference Xu Z, Rowcliffe D (2004) Finite element analysis of substrate effects on indentation behaviour of thin films. Thin Solid Films 447–448:399–405CrossRef Xu Z, Rowcliffe D (2004) Finite element analysis of substrate effects on indentation behaviour of thin films. Thin Solid Films 447–448:399–405CrossRef
90.
go back to reference Tunvisut K, Busso EP, O’Dowd NP (2002) Determination of the mechanical properties of metallic thin films and substrates from indentation tests. Philos Mag A 82:2013–2029CrossRef Tunvisut K, Busso EP, O’Dowd NP (2002) Determination of the mechanical properties of metallic thin films and substrates from indentation tests. Philos Mag A 82:2013–2029CrossRef
91.
go back to reference Chudoba T, Schwarzer N, Richter F (1999) New possibilities of mechanical surface characterization with spherical indenters by comparison of experimental and theoretical results. Thin Solid Films 355:284–289CrossRef Chudoba T, Schwarzer N, Richter F (1999) New possibilities of mechanical surface characterization with spherical indenters by comparison of experimental and theoretical results. Thin Solid Films 355:284–289CrossRef
92.
go back to reference Chudoba T, Schwarzer N, Richter F (2000) Determination of elastic properties of thin films by indentation measurements with a spherical indenter. Surf Coat Technol 127:9–17CrossRef Chudoba T, Schwarzer N, Richter F (2000) Determination of elastic properties of thin films by indentation measurements with a spherical indenter. Surf Coat Technol 127:9–17CrossRef
93.
go back to reference Chudoba T, Schwarzer N, Richter F, Beck U (2000) Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter. Thin Solid Films 377–378:366–372CrossRef Chudoba T, Schwarzer N, Richter F, Beck U (2000) Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter. Thin Solid Films 377–378:366–372CrossRef
94.
go back to reference Schwarzer N, Whittling M, Swain M, Richter F (1995) The analytical solution of the contact problem of spherical indenters on layered materials: application for the investigation of tin films on silicon. Thin Solid Films 270:371–375CrossRef Schwarzer N, Whittling M, Swain M, Richter F (1995) The analytical solution of the contact problem of spherical indenters on layered materials: application for the investigation of tin films on silicon. Thin Solid Films 270:371–375CrossRef
95.
go back to reference Schwarzer N, Richter F, Hecht G (1999) The elastic field in a coated half-space under hertzian pressure distribution. Surf Coat Technol 114:292–303CrossRef Schwarzer N, Richter F, Hecht G (1999) The elastic field in a coated half-space under hertzian pressure distribution. Surf Coat Technol 114:292–303CrossRef
96.
go back to reference Schwarzer N, Chudoba T, Billep D, Richter F (1999) Investigation of coating substrate compounds using inclined spherical indentation. Surf Coat Technol 116–119:244–252CrossRef Schwarzer N, Chudoba T, Billep D, Richter F (1999) Investigation of coating substrate compounds using inclined spherical indentation. Surf Coat Technol 116–119:244–252CrossRef
98.
go back to reference Shiwa M, Weppelmann E, Munz D, Swain MV, Kishi T (1996) Acoustic emission and precision force-displacement observations of pointed and spherical indentation of silicon and TiN film on silicon. J Mater Sci 31:5985–5991. doi:10.1007/BF01152149 CrossRef Shiwa M, Weppelmann E, Munz D, Swain MV, Kishi T (1996) Acoustic emission and precision force-displacement observations of pointed and spherical indentation of silicon and TiN film on silicon. J Mater Sci 31:5985–5991. doi:10.​1007/​BF01152149 CrossRef
99.
go back to reference Bressan JD, Tramontin A, Rosa C (2005) Modeling of nanoindentation of bulk and thin film by finite element method. Wear 258:115–122CrossRef Bressan JD, Tramontin A, Rosa C (2005) Modeling of nanoindentation of bulk and thin film by finite element method. Wear 258:115–122CrossRef
100.
go back to reference Saha R, Nix WD (2002) Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater 50:23–38CrossRef Saha R, Nix WD (2002) Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater 50:23–38CrossRef
101.
go back to reference Chen J, Bull SJ (2009) On the factors affecting the critical indenter penetration for measurement of coating hardness. Vacuum 83:911–920CrossRef Chen J, Bull SJ (2009) On the factors affecting the critical indenter penetration for measurement of coating hardness. Vacuum 83:911–920CrossRef
102.
go back to reference Sakharova NA, Fernandes JV, Oliveira MC, Antunes JM (2010) Influence of ductile interlayers on mechanical behaviour of hard coatings under depth-sensing indentation: a numerical study on TiAlN. J Mater Sci 45:3812–3823. doi:10.1007/s10853-010-4436-1 CrossRef Sakharova NA, Fernandes JV, Oliveira MC, Antunes JM (2010) Influence of ductile interlayers on mechanical behaviour of hard coatings under depth-sensing indentation: a numerical study on TiAlN. J Mater Sci 45:3812–3823. doi:10.​1007/​s10853-010-4436-1 CrossRef
Metadata
Title
Determination of material properties of thin films and coatings using indentation tests: a review
Authors
Wu Wen
Adib A. Becker
Wei Sun
Publication date
17-07-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1348-3

Other articles of this Issue 21/2017

Journal of Materials Science 21/2017 Go to the issue

Premium Partners