Skip to main content
Top
Published in: Knowledge and Information Systems 2/2022

03-01-2022 | Regular Paper

Determining maximum cliques for community detection in weighted sparse networks

Authors: Swati Goswami, Asit Kumar Das

Published in: Knowledge and Information Systems | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, we have delved into detecting dense regions of weighted sparse networks through identification of cliques and communities. A novel clique finding method is introduced to generate all maximum cliques of a sparse network, with focus on analysis of real-life networks and a community detection algorithm is devised on maximal cliques to determine possible overlapping communities of the weighted sparse network. A good number of methods of clique detection already exist, some of which are truly efficient, but many of them lack direct applicability to real-life network analysis, as they deal with simple networks, hide intermediary details and allow cliques to be formed without information on strength of interactions in group behavior. The proposed method attaches a clique-intensity value with every clique and using two thresholds on intensity of interactions, at the individual level and group level, provides handle to filter stray or insignificant interactions at various stages of clique formation. Using differently sized weighted maximal cliques as building blocks, a new overlapping community detection method is proposed using a new measure, a weighted version of Jaccard index, called weighted Jaccard index. Experiments are done on real-life networks; the maximum clique structures reveal sensitivity to threshold values, while the resulting community structures demonstrate efficacy of the community detection method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abello J, Pardalos PM, Resende MGC (1998) On very large maximum clique problems. In: Proceedings of algorithms and experiments (ALEX98), pp 175–183 Abello J, Pardalos PM, Resende MGC (1998) On very large maximum clique problems. In: Proceedings of algorithms and experiments (ALEX98), pp 175–183
2.
go back to reference Aharony N, Pan W, Ip C, Khayal I, Pentland A (2011) Social fMRI: investigating and shaping social mechanisms in the real world. Pervasive Mobile Comput 7(6):643–659CrossRef Aharony N, Pan W, Ip C, Khayal I, Pentland A (2011) Social fMRI: investigating and shaping social mechanisms in the real world. Pervasive Mobile Comput 7(6):643–659CrossRef
3.
go back to reference Alidaee B, Glover F, Kochenberger G, Wang H (2007) Solving the maximum edge weight clique problem via unconstrained quadratic programming. Eur J Oper Res 181(2):592–597MATHCrossRef Alidaee B, Glover F, Kochenberger G, Wang H (2007) Solving the maximum edge weight clique problem via unconstrained quadratic programming. Eur J Oper Res 181(2):592–597MATHCrossRef
4.
go back to reference Bahadur KC, Akutsu T, Tomita E, Seki T (2004) Protein side-chain packing problem: a maximum edge-weight clique algorithmic approach. In: Proceedings of the second conference on asia-pacific bioinformatics-volume 29. Australian Computer Society, Inc., pp 191–200 Bahadur KC, Akutsu T, Tomita E, Seki T (2004) Protein side-chain packing problem: a maximum edge-weight clique algorithmic approach. In: Proceedings of the second conference on asia-pacific bioinformatics-volume 29. Australian Computer Society, Inc., pp 191–200
5.
go back to reference Barabási AL (2016) Network science. Cambridge University Press, CambridgeMATH Barabási AL (2016) Network science. Cambridge University Press, CambridgeMATH
6.
go back to reference Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci 101(11):3747–3752MATHCrossRef Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci 101(11):3747–3752MATHCrossRef
7.
go back to reference Batsyn M, Goldengorin B, Maslov E, Pardalos PM (2014) Improvements to MCS algorithm for the maximum clique problem J. Combin Optim 27(2):397–416MathSciNetMATHCrossRef Batsyn M, Goldengorin B, Maslov E, Pardalos PM (2014) Improvements to MCS algorithm for the maximum clique problem J. Combin Optim 27(2):397–416MathSciNetMATHCrossRef
8.
go back to reference Bomze IM, Budinich M, Pardalos PM, Pelillo M (1999) The maximum clique problem D. In: Du, Pardalos PM (eds) Handbook of combinatorial optimization. Springer, New York, pp 1–74 Bomze IM, Budinich M, Pardalos PM, Pelillo M (1999) The maximum clique problem D. In: Du, Pardalos PM (eds) Handbook of combinatorial optimization. Springer, New York, pp 1–74
9.
go back to reference Cai S, Su K, Sattar A (2011) Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif Intell 175(9–10):1672–1696MathSciNetMATHCrossRef Cai S, Su K, Sattar A (2011) Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif Intell 175(9–10):1672–1696MathSciNetMATHCrossRef
10.
go back to reference Chen D, Shang M, Lv Z, Fu Y (2010) Detecting overlapping communities of weighted networks via a local algorithm. Physica A: Stat Mech Appl 389(19):4177–4187CrossRef Chen D, Shang M, Lv Z, Fu Y (2010) Detecting overlapping communities of weighted networks via a local algorithm. Physica A: Stat Mech Appl 389(19):4177–4187CrossRef
11.
go back to reference Chu Y, Liu B, Cai S, Luo C, You H (2020) An efficient local search algorithm for solving maximum edge weight clique problem in large graphs. J Combin Optim 34:933–954MathSciNetMATHCrossRef Chu Y, Liu B, Cai S, Luo C, You H (2020) An efficient local search algorithm for solving maximum edge weight clique problem in large graphs. J Combin Optim 34:933–954MathSciNetMATHCrossRef
12.
go back to reference Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111CrossRef Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111CrossRef
13.
go back to reference Das A, Svendsen M, Tirthapura S (2019) Incremental maintenance of maximal cliques in a dynamic graph. VLDB J 28(3):351–375CrossRef Das A, Svendsen M, Tirthapura S (2019) Incremental maintenance of maximal cliques in a dynamic graph. VLDB J 28(3):351–375CrossRef
14.
go back to reference Diestel R (2000) Graph theory {Graduate Texts in Mathematics; 173}. Springer, Berlin Diestel R (2000) Graph theory {Graduate Texts in Mathematics; 173}. Springer, Berlin
15.
go back to reference Eppstein D, Löffler M, Strash D (2010) December. Listing all maximal cliques in sparse graphs in near-optimal time. In: International symposium on algorithms and computation. Springer, Berlin, pp 403–414 Eppstein D, Löffler M, Strash D (2010) December. Listing all maximal cliques in sparse graphs in near-optimal time. In: International symposium on algorithms and computation. Springer, Berlin, pp 403–414
16.
go back to reference Eppstein D, Strash D (2011) Listing all maximal cliques in large sparse real-world graphs. Exp Algorithms 18:364–375MATHCrossRef Eppstein D, Strash D (2011) Listing all maximal cliques in large sparse real-world graphs. Exp Algorithms 18:364–375MATHCrossRef
17.
go back to reference Friden C, Hertz A, de Werra D (1989) Stabulus: a technique for finding stable sets in large graphs with tabu search. Computing 42(1):35–44MATHCrossRef Friden C, Hertz A, de Werra D (1989) Stabulus: a technique for finding stable sets in large graphs with tabu search. Computing 42(1):35–44MATHCrossRef
18.
go back to reference Gong Y, Zhu Y, Duan L, Liu Q, Guan Z, Sun F, Ou W, Zhu KQ (2019) Exact-k recommendation via maximal clique optimization. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 617–626 Gong Y, Zhu Y, Duan L, Liu Q, Guan Z, Sun F, Ou W, Zhu KQ (2019) Exact-k recommendation via maximal clique optimization. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining, pp 617–626
19.
go back to reference Gouveia L, Pedro M (2015) Solving the maximum edge-weight clique problem in sparse graphs with compact formulations. EURO J Comput Optim 3(1):1–30MathSciNetMATHCrossRef Gouveia L, Pedro M (2015) Solving the maximum edge-weight clique problem in sparse graphs with compact formulations. EURO J Comput Optim 3(1):1–30MathSciNetMATHCrossRef
20.
go back to reference Hosseinian S, Fontes DB, Butenko S, Nardelli MB, Fornari M, Curtarolo S (2017) The maximum edge weight clique problem: formulations and solution approaches. In: Optimization methods and applications. Springer, Cham, pp 217–237 Hosseinian S, Fontes DB, Butenko S, Nardelli MB, Fornari M, Curtarolo S (2017) The maximum edge weight clique problem: formulations and solution approaches. In: Optimization methods and applications. Springer, Cham, pp 217–237
21.
go back to reference Jaccard P (1902) Distribution comparée de la flore alpine dans quelques régions des Alpes occidentales et orientales. Bulletin de la Murithienne 31:81–92 Jaccard P (1902) Distribution comparée de la flore alpine dans quelques régions des Alpes occidentales et orientales. Bulletin de la Murithienne 31:81–92
22.
go back to reference Jiang H, Li CM, Manya F (2017) An exact algorithm for the maximum weight clique problem in large graphs. In: Thirty-first AAAI conference on artificial intelligence. Jiang H, Li CM, Manya F (2017) An exact algorithm for the maximum weight clique problem in large graphs. In: Thirty-first AAAI conference on artificial intelligence.
23.
go back to reference Konc J, Janezic D (2007) An improved branch and bound algorithm for the maximum clique problem. Proteins 4:5MATH Konc J, Janezic D (2007) An improved branch and bound algorithm for the maximum clique problem. Proteins 4:5MATH
24.
go back to reference Knuth DE (1993) The Stanford graphbase: a platform for combinatorial computing. ACM Press, New York, pp 74–87MATH Knuth DE (1993) The Stanford graphbase: a platform for combinatorial computing. ACM Press, New York, pp 74–87MATH
25.
go back to reference Lu Z, Wahlström J, Nehorai A (2018) Community detection in complex networks via clique conductance. Sci Rep 8(1):1–16 Lu Z, Wahlström J, Nehorai A (2018) Community detection in complex networks via clique conductance. Sci Rep 8(1):1–16
26.
go back to reference Malladi KT, Mitrovic-Minic S, Punnen AP (2017) Clustered maximum weight clique problem: algorithms and empirical analysis. Comput Oper Res 85:113–128MathSciNetMATHCrossRef Malladi KT, Mitrovic-Minic S, Punnen AP (2017) Clustered maximum weight clique problem: algorithms and empirical analysis. Comput Oper Res 85:113–128MathSciNetMATHCrossRef
27.
go back to reference Martí R, Gallego M, Duarte A (2010) A branch and bound algorithm for the maximum diversity problem. Eur J Oper Res 200(1):36–44MATHCrossRef Martí R, Gallego M, Duarte A (2010) A branch and bound algorithm for the maximum diversity problem. Eur J Oper Res 200(1):36–44MATHCrossRef
28.
30.
go back to reference Nešetřil J, de Mendez PO (2012) Sparsity: graphs, structures, and algorithms, vol 28. Springer, BerlinMATH Nešetřil J, de Mendez PO (2012) Sparsity: graphs, structures, and algorithms, vol 28. Springer, BerlinMATH
31.
go back to reference Newman ME (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E 64(1):016132CrossRef Newman ME (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E 64(1):016132CrossRef
33.
34.
go back to reference Östergård PR (2001) A new algorithm for the maximum-weight clique problem. Nordic J Comput 8(4):424–436MathSciNetMATH Östergård PR (2001) A new algorithm for the maximum-weight clique problem. Nordic J Comput 8(4):424–436MathSciNetMATH
35.
go back to reference Palla G, Ábel D, Derényi I, Farkas I, Pollner P, Vicsek T (2005) K-clique percolation and clustering in directed and weighted networks. Bolayai Society Mathematical Studies, Berlin Palla G, Ábel D, Derényi I, Farkas I, Pollner P, Vicsek T (2005) K-clique percolation and clustering in directed and weighted networks. Bolayai Society Mathematical Studies, Berlin
36.
go back to reference Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818CrossRef Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818CrossRef
37.
go back to reference Park K, Lee K, Park S (1996) An extended formulation approach to the edge-weighted maximal clique problem. Eur J Oper Res 95(3):671–682MATHCrossRef Park K, Lee K, Park S (1996) An extended formulation approach to the edge-weighted maximal clique problem. Eur J Oper Res 95(3):671–682MATHCrossRef
38.
go back to reference Richter S, Helmert M, Gretton C (2007) A stochastic local search approach to vertex cover. In: Annual conference on artificial intelligence. Springer, Berlin, pp 412–426 Richter S, Helmert M, Gretton C (2007) A stochastic local search approach to vertex cover. In: Annual conference on artificial intelligence. Springer, Berlin, pp 412–426
39.
go back to reference Roberto A, Maurizio B, Roberto C (2009) Optimal results and tight bounds for the maximum diversity problem. Found Comput Decis Sci 34:73–85 Roberto A, Maurizio B, Roberto C (2009) Optimal results and tight bounds for the maximum diversity problem. Found Comput Decis Sci 34:73–85
40.
go back to reference Rossi R, Ahmed N (2015) The network data repository with interactive graph analytics and visualization. In: AAAI, vol. 15, pp 4292–4293 Rossi R, Ahmed N (2015) The network data repository with interactive graph analytics and visualization. In: AAAI, vol. 15, pp 4292–4293
41.
go back to reference Rossi RA, Zhou R (2018) GraphZIP: a clique-based sparse graph compression method. J Big Data 5(1):10CrossRef Rossi RA, Zhou R (2018) GraphZIP: a clique-based sparse graph compression method. J Big Data 5(1):10CrossRef
42.
go back to reference Shen H, Cheng X, Cai K, Hu M-B (2009) Detect overlapping and hierarchical community structure in networks. Physica A 388(8):1706–1712CrossRef Shen H, Cheng X, Cai K, Hu M-B (2009) Detect overlapping and hierarchical community structure in networks. Physica A 388(8):1706–1712CrossRef
43.
go back to reference Shimizu S, Yamaguchi K, Masuda S (2018) A branch-and-bound based exact algorithm for the maximum edge-weight clique problem. In: International conference on computational science/intelligence and applied informatics. Springer, Cham, pp 27–47 Shimizu S, Yamaguchi K, Masuda S (2018) A branch-and-bound based exact algorithm for the maximum edge-weight clique problem. In: International conference on computational science/intelligence and applied informatics. Springer, Cham, pp 27–47
44.
45.
go back to reference Verma V, Aggarwal RK (2020) A comparative analysis of similarity measures akin to the Jaccard index in collaborative recommendations: empirical and theoretical perspective. Soc Netw Anal Min 10:1–16CrossRef Verma V, Aggarwal RK (2020) A comparative analysis of similarity measures akin to the Jaccard index in collaborative recommendations: empirical and theoretical perspective. Soc Netw Anal Min 10:1–16CrossRef
46.
go back to reference Wang X, Liu G, Li J (2017) Overlapping community detection based on structural centrality in complex networks. IEEE Access 5:25258–25269CrossRef Wang X, Liu G, Li J (2017) Overlapping community detection based on structural centrality in complex networks. IEEE Access 5:25258–25269CrossRef
47.
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. Nature 393(6684):440MATHCrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. Nature 393(6684):440MATHCrossRef
48.
go back to reference Wen X, Chen WN, Lin Y, Gu T, Zhang H, Li Y, Yin Y, Zhang J (2016) A maximal clique based multiobjective evolutionary algorithm for overlapping community detection. IEEE Trans Evol Comput 21(3):363–377 Wen X, Chen WN, Lin Y, Gu T, Zhang H, Li Y, Yin Y, Zhang J (2016) A maximal clique based multiobjective evolutionary algorithm for overlapping community detection. IEEE Trans Evol Comput 21(3):363–377
50.
go back to reference Žalik KR (2015) Maximal neighbor similarity reveals real communities in networks. Sci Rep 5:18374CrossRef Žalik KR (2015) Maximal neighbor similarity reveals real communities in networks. Sci Rep 5:18374CrossRef
Metadata
Title
Determining maximum cliques for community detection in weighted sparse networks
Authors
Swati Goswami
Asit Kumar Das
Publication date
03-01-2022
Publisher
Springer London
Published in
Knowledge and Information Systems / Issue 2/2022
Print ISSN: 0219-1377
Electronic ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-021-01631-y

Other articles of this Issue 2/2022

Knowledge and Information Systems 2/2022 Go to the issue

Premium Partner