Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2018

16-07-2018

Development and study of solid polymer electrolytes based on PVdF-HFP/PVAc: Mg (ClO4)2 for Mg ion batteries

Authors: S. Ponmani, M. Ramesh Prabhu

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Mg-ion conducting solid polymer electrolytes (SPE) consisting of PVdF-HFP/PVAc with magnesium perchlorate Mg(ClO4)2 salt have been developed and their experimental investigations are reported. Solution casting method is used for the preparation of the polymer electrolyte films by using THF as solvent. The XRD reveals that the crystalline phase of the polymer host and it has completely changed into other side with the addition of the dopant. FTIR analysis shows the good complexation behavior between the polymer and the salt. The temperature dependent ac ionic conductivity shows the highest ionic conductivity of 2.93 × 10− 4 Scm− 1 was found at 363K for the concentration of 69 Wt% PVdF-HFP: 23 Wt% PVAc : 8 Wt% Mg(ClO4)2 of the polymer electrolytes with an activation energy value of 0.33 eV. The SPE with the highest conductivity showed as electrochemical stability of 4 V. The obtained cyclic voltammetry is an evidence for reversibility.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Agnihotri, A.L. Sharma, Optimization of concentration of MWCNT in terms of performance of prepared novel cathode material for energy storage. J. Integr. Sci. Technol. 5, 23–26 (2017) S. Agnihotri, A.L. Sharma, Optimization of concentration of MWCNT in terms of performance of prepared novel cathode material for energy storage. J. Integr. Sci. Technol. 5, 23–26 (2017)
2.
go back to reference X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2014)CrossRef X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2014)CrossRef
3.
go back to reference J. Skea, S. Nishioka (2008) Policies and practices for a low-carbon society. Climate policy (Taylor and francis, Milton Park) pp. 5–16 J. Skea, S. Nishioka (2008) Policies and practices for a low-carbon society. Climate policy (Taylor and francis, Milton Park) pp. 5–16
4.
go back to reference H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)CrossRef H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)CrossRef
5.
go back to reference F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sour. 88, 169–191 (2000)CrossRef F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sour. 88, 169–191 (2000)CrossRef
6.
go back to reference B. Scrosati, F. Croce, S. Panero, Progress in lithium polymer battery R&D. J. Power Sour. 100, 93–100 (2001)CrossRef B. Scrosati, F. Croce, S. Panero, Progress in lithium polymer battery R&D. J. Power Sour. 100, 93–100 (2001)CrossRef
7.
go back to reference C.H. Park, Y.K. Sun, D.W. Kim, Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries. Electrochim. Acta 50, –375 (2004) C.H. Park, Y.K. Sun, D.W. Kim, Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries. Electrochim. Acta 50, –375 (2004)
8.
go back to reference J.B. Good enough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)CrossRef J.B. Good enough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)CrossRef
9.
go back to reference H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems—characteristics and comparisons. Renew. Sustain. Energy Rev. 12, 1221–1250 (2008)CrossRef H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems—characteristics and comparisons. Renew. Sustain. Energy Rev. 12, 1221–1250 (2008)CrossRef
10.
go back to reference C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010)CrossRef C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010)CrossRef
11.
go back to reference N. Angulakshmi, S. Thomas, K.S. Nahm, A.M. Stephan, R.N. Elizabeth, Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries. Ionics 17, 407–414 (2011)CrossRef N. Angulakshmi, S. Thomas, K.S. Nahm, A.M. Stephan, R.N. Elizabeth, Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries. Ionics 17, 407–414 (2011)CrossRef
12.
go back to reference A.M. Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J 42, 21–42 (2006)CrossRef A.M. Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J 42, 21–42 (2006)CrossRef
13.
go back to reference D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, E.H. Gottlieb, Y. Gofer, I. Goldberg, Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J. Electrochem. Soc. 149, 115–121 (2002)CrossRef D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, E.H. Gottlieb, Y. Gofer, I. Goldberg, Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J. Electrochem. Soc. 149, 115–121 (2002)CrossRef
14.
go back to reference R.M. Darling, K.G. Gallagher, J.A. Kowalski, S. Ha, F.R. Brushett, Pathways to low cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7, 3459–3477 (2014)CrossRef R.M. Darling, K.G. Gallagher, J.A. Kowalski, S. Ha, F.R. Brushett, Pathways to low cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7, 3459–3477 (2014)CrossRef
15.
go back to reference M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. commun. 3, 1149–1155 (2012)CrossRef M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. commun. 3, 1149–1155 (2012)CrossRef
16.
go back to reference N. Wu, Y.C. Lyu, R.J. Xiao, Y.X. Yu, X.Q. Yang, H. Li, L. Gu, Y.G. Guo, A highly reversible, low strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Mater 2014 6, e120 (2014)CrossRef N. Wu, Y.C. Lyu, R.J. Xiao, Y.X. Yu, X.Q. Yang, H. Li, L. Gu, Y.G. Guo, A highly reversible, low strain Mg-ion insertion anode material for rechargeable Mg-ion batteries. NPG Asia Mater 2014 6, e120 (2014)CrossRef
17.
go back to reference N. Wu, H.R. Yao, Y.G. Guo, Y.X. Yin, Improving the electrochemical properties of the red P anode in Na-ion batteries via the spaceconfinement of carbon nanopores. J. Mater. Chem. A 3, 24221–24225 (2015)CrossRef N. Wu, H.R. Yao, Y.G. Guo, Y.X. Yin, Improving the electrochemical properties of the red P anode in Na-ion batteries via the spaceconfinement of carbon nanopores. J. Mater. Chem. A 3, 24221–24225 (2015)CrossRef
18.
go back to reference Y. Nuli, J. Yang, J. Wang, Y. Li, Electrochemical interaction of Mg2+ in magnesium manganese silicate and its application as high energy rechargeable magnesium battery cathode. J. Phys. Chem. C 113, 12594–12597 (2009)CrossRef Y. Nuli, J. Yang, J. Wang, Y. Li, Electrochemical interaction of Mg2+ in magnesium manganese silicate and its application as high energy rechargeable magnesium battery cathode. J. Phys. Chem. C 113, 12594–12597 (2009)CrossRef
19.
go back to reference S. Song, M. kotobuki, F. zheng, Q. Li, C. xu, Y. Wang, W.D.Z. Li, N. Hu, L. Lu, communication- a composite polymer electrolyte for safer Mg batteries. J. Electrochem. Soc. 164, 741–743 (2017)CrossRef S. Song, M. kotobuki, F. zheng, Q. Li, C. xu, Y. Wang, W.D.Z. Li, N. Hu, L. Lu, communication- a composite polymer electrolyte for safer Mg batteries. J. Electrochem. Soc. 164, 741–743 (2017)CrossRef
20.
go back to reference M.S. Park, J.G. Kim, Y.J. Kim, N.S. Choi, J.S. Kim, Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects. Isr. J. Chem. 55, 570–585 (2015)CrossRef M.S. Park, J.G. Kim, Y.J. Kim, N.S. Choi, J.S. Kim, Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects. Isr. J. Chem. 55, 570–585 (2015)CrossRef
21.
go back to reference N. Wu, W. Wang, Y. Wei, T. Li,)studies on the effect of nano sized Mgo in magnesium ion conducting gel polymer electrolytes for rechargeable magnesium batteries. Energies 10, 1215 (2017)CrossRef N. Wu, W. Wang, Y. Wei, T. Li,)studies on the effect of nano sized Mgo in magnesium ion conducting gel polymer electrolytes for rechargeable magnesium batteries. Energies 10, 1215 (2017)CrossRef
22.
go back to reference J. Wang, S. Song, R. Muchakayala, X. Hu, R. Liu, Structural, electrical and electrochemical properties of PVA based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics 23, 1759–1769 (2017)CrossRef J. Wang, S. Song, R. Muchakayala, X. Hu, R. Liu, Structural, electrical and electrochemical properties of PVA based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics 23, 1759–1769 (2017)CrossRef
23.
go back to reference J. Song, E. Sahadeo, M. Noked, S.B. Lee, Mapping the challenges of Magnesium battery. J. Phys. Chem. Lett. 7, 1736–1749 (2016)CrossRef J. Song, E. Sahadeo, M. Noked, S.B. Lee, Mapping the challenges of Magnesium battery. J. Phys. Chem. Lett. 7, 1736–1749 (2016)CrossRef
24.
go back to reference S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, A. Wendsjo, Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407–1416 (2001)CrossRef S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, A. Wendsjo, Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407–1416 (2001)CrossRef
25.
go back to reference N. Ataollahi, A. Ahmad, H. Hamzah, M.Y.A. Rahman, N.S. Mohamed, Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int. J. Electrochem. Sci. 7, 6693–6703 (2012) N. Ataollahi, A. Ahmad, H. Hamzah, M.Y.A. Rahman, N.S. Mohamed, Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int. J. Electrochem. Sci. 7, 6693–6703 (2012)
26.
go back to reference M. Ulaganathan, S. Rajendran, Preparation and characterization of (PVAc/PVdF-HFP)—based polymer blend electrolytes. Ionics 16, 515–521 (2010)CrossRef M. Ulaganathan, S. Rajendran, Preparation and characterization of (PVAc/PVdF-HFP)—based polymer blend electrolytes. Ionics 16, 515–521 (2010)CrossRef
27.
go back to reference Y. Hirai, C. Tani, Electrochromism for organic materials in polymeric all-solid-state systems. Appl. Phys. Lett. 43, 704 (1983)CrossRef Y. Hirai, C. Tani, Electrochromism for organic materials in polymeric all-solid-state systems. Appl. Phys. Lett. 43, 704 (1983)CrossRef
28.
go back to reference L.L. Yang, A.R. McgGhie, G.C. Parrington, Ionic conductivity in complexes of poly(ethylene oxide) and MgCl2. J. Electrochem. Soc. 133, 1380–1385 (1986)CrossRef L.L. Yang, A.R. McgGhie, G.C. Parrington, Ionic conductivity in complexes of poly(ethylene oxide) and MgCl2. J. Electrochem. Soc. 133, 1380–1385 (1986)CrossRef
29.
go back to reference M. Ulaganathan, S. Sundar pethaiah, S. Rajendran, Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications. Mat. chem. Phys. 129, 471–476 (2011)CrossRef M. Ulaganathan, S. Sundar pethaiah, S. Rajendran, Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications. Mat. chem. Phys. 129, 471–476 (2011)CrossRef
30.
go back to reference R.M. Hodge, G.H. Edward, G.P. Simon, Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37, 1371–1376 (1996)CrossRef R.M. Hodge, G.H. Edward, G.P. Simon, Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37, 1371–1376 (1996)CrossRef
31.
go back to reference M.J. Reddy, P.P. Chu, Effect of Mg2 + on PEO morphology and conductivity. Solid State Ionics 149, 115–123 (2002)CrossRef M.J. Reddy, P.P. Chu, Effect of Mg2 + on PEO morphology and conductivity. Solid State Ionics 149, 115–123 (2002)CrossRef
33.
go back to reference M. Ulaganathan, S. Rajendran, Preparation and characterizations of PVAc/PVdF-HFP based polymer blend electrolytes. Ionics 16, 515–521 (2010)CrossRef M. Ulaganathan, S. Rajendran, Preparation and characterizations of PVAc/PVdF-HFP based polymer blend electrolytes. Ionics 16, 515–521 (2010)CrossRef
34.
go back to reference S. Selvasekarapandian, R. Baskaran, O. Kamishima, J. Kawamura, T. Hattori, Laser raman and FTIR studies on Li + interaction in PVAc/LiClO4 polymer electrolytes. Spectrochimica Acta Part A 65, 1234–1240 (2006)CrossRef S. Selvasekarapandian, R. Baskaran, O. Kamishima, J. Kawamura, T. Hattori, Laser raman and FTIR studies on Li + interaction in PVAc/LiClO4 polymer electrolytes. Spectrochimica Acta Part A 65, 1234–1240 (2006)CrossRef
35.
go back to reference L.N. Sim, S.R. Majid, A.K. Arof, FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 58, 57–66 (2012)CrossRef L.N. Sim, S.R. Majid, A.K. Arof, FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib. Spectrosc. 58, 57–66 (2012)CrossRef
36.
go back to reference M. Ulaganathan, S. Rajendran, Effect of different salts on PVAc/PVdF-co-HFP based polymer blend electrolytes. J. Appl. Polym. Sci. 118, 646–651 (2010) M. Ulaganathan, S. Rajendran, Effect of different salts on PVAc/PVdF-co-HFP based polymer blend electrolytes. J. Appl. Polym. Sci. 118, 646–651 (2010)
37.
go back to reference S. Aruna, A. Anuradha, P.C. Thomas, M. Gulam Mohammed, S.A. Rajasekar, M. Vimalan, G. Mani, P. Sagayaraj, Growth, optical and thermal studies of L-arginine perchlorate—A promising non-linear optical single crystal. Indian J. Pure Appl. Phys. 45, 524–528 (2007) S. Aruna, A. Anuradha, P.C. Thomas, M. Gulam Mohammed, S.A. Rajasekar, M. Vimalan, G. Mani, P. Sagayaraj, Growth, optical and thermal studies of L-arginine perchlorate—A promising non-linear optical single crystal. Indian J. Pure Appl. Phys. 45, 524–528 (2007)
38.
go back to reference F.A. Miller, G.C. Carlson, F.F. Bentley, W.H. Jones, Infra-red spectra of inorganic ions in the cesium bromide region (700 – 300 cm – 1). Spectrochim Acta 16, 135–235 (1960)CrossRef F.A. Miller, G.C. Carlson, F.F. Bentley, W.H. Jones, Infra-red spectra of inorganic ions in the cesium bromide region (700 – 300 cm – 1). Spectrochim Acta 16, 135–235 (1960)CrossRef
39.
go back to reference D. Vanitha, A. Bahadur sultan, N. Nallaperumal, A. Shunmuganarayanan, Structural, thermal and electrical properties of polyvinyl alcohol/poly (vinyl pyrrolidone)—sodium nitrate solid polymer blend electrolyte. Ionics 24, 139–151 (2018)CrossRef D. Vanitha, A. Bahadur sultan, N. Nallaperumal, A. Shunmuganarayanan, Structural, thermal and electrical properties of polyvinyl alcohol/poly (vinyl pyrrolidone)—sodium nitrate solid polymer blend electrolyte. Ionics 24, 139–151 (2018)CrossRef
40.
go back to reference S. Sivadevi, S. Selvasekarapandian, S. Karthikeyan, N. vijaya, F. Kingslin, M. Genova, C. Sanjeeviraja, H. Nithya, I.J. kawamura, Proton-conducting polymer electrolyte based on PVA-PAN blend polymer doped with NH4NO3.. Int. J. Electroact. Mater. 1, 64–70 (2013) S. Sivadevi, S. Selvasekarapandian, S. Karthikeyan, N. vijaya, F. Kingslin, M. Genova, C. Sanjeeviraja, H. Nithya, I.J. kawamura, Proton-conducting polymer electrolyte based on PVA-PAN blend polymer doped with NH4NO3.. Int. J. Electroact. Mater. 1, 64–70 (2013)
41.
go back to reference K.P. Radha, S. Selvasekarapandian, S. Karthikeyan, M. Hema, C. Sanjeeviraja, Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 19, 1437–1447 (2013)CrossRef K.P. Radha, S. Selvasekarapandian, S. Karthikeyan, M. Hema, C. Sanjeeviraja, Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 19, 1437–1447 (2013)CrossRef
42.
go back to reference S.D. Druger, A. Nitzan, M.A. Ratner, Application of dynamic bond percolation theory to the dielectric response of polymer electrolytes. Solid State Ionics 18–19, 106–111 (1983) S.D. Druger, A. Nitzan, M.A. Ratner, Application of dynamic bond percolation theory to the dielectric response of polymer electrolytes. Solid State Ionics 18–19, 106–111 (1983)
43.
go back to reference S. Ramesh, A.H. Yahya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152, 291–294 (2002)CrossRef S. Ramesh, A.H. Yahya, A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152, 291–294 (2002)CrossRef
44.
go back to reference X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong, Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim. Acta 46, 1829–1836 (2001)CrossRef X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong, Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim. Acta 46, 1829–1836 (2001)CrossRef
45.
go back to reference G. Govindaraj, N. Baskaran, K. Shahi, P. Monoravi, Preparation, conductivity, complex permittivity and electric modulus in AgI,Ag2O,SeO3,MoO3 glasses. Solid State Ionics 76, 47–55 (1995)CrossRef G. Govindaraj, N. Baskaran, K. Shahi, P. Monoravi, Preparation, conductivity, complex permittivity and electric modulus in AgI,Ag2O,SeO3,MoO3 glasses. Solid State Ionics 76, 47–55 (1995)CrossRef
Metadata
Title
Development and study of solid polymer electrolytes based on PVdF-HFP/PVAc: Mg (ClO4)2 for Mg ion batteries
Authors
S. Ponmani
M. Ramesh Prabhu
Publication date
16-07-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9649-0

Other articles of this Issue 17/2018

Journal of Materials Science: Materials in Electronics 17/2018 Go to the issue