Skip to main content
Top
Published in: Experiments in Fluids 10/2019

01-10-2019 | Research Article

Development of a nanoscale hot-wire probe for supersonic flow applications

Authors: K. Kokmanian, S. Scharnowski, M. Bross, S. Duvvuri, M. K. Fu, C. J. Kähler, M. Hultmark

Published in: Experiments in Fluids | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new nanoscale thermal anemometry probe (NSTAP) was designed and fabricated to measure mass flux in supersonic flows. This sensor was evaluated in the Trisonic Wind Tunnel Munich (TWM) at both subsonic and supersonic speeds. Subsonic compressible flow tests were performed to confirm the new sensor’s repeatability and to compare its behaviour to measurements from a conventional cylindrical hot-wire, while supersonic tests were performed to investigate the nature of the convective heat transfer from the nanoscale sensor at those conditions. For the range of mass fluxes tested in the supersonic regime, a linear relationship between the Nusselt number and the Reynolds number fit the data well. A linear relationship has previously been noticed at length scales close to the molecular mean free path of the flow and has been attributed to the free-molecule flow regime, where the Knudsen number is on the order of unity.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bailey SCC, Kunkel GJ, Hultmark M, Vallikivi M, Hill JP, Meyer KA, Tsay C, Arnold CB, Smits AJ (2010) Turbulence measurements using a nanoscale thermal anemometry probe. J Fluid Mech 663:160–179CrossRef Bailey SCC, Kunkel GJ, Hultmark M, Vallikivi M, Hill JP, Meyer KA, Tsay C, Arnold CB, Smits AJ (2010) Turbulence measurements using a nanoscale thermal anemometry probe. J Fluid Mech 663:160–179CrossRef
go back to reference Bruun HH (1996) Hot-wire anemometry: principles and signal analysis Bruun HH (1996) Hot-wire anemometry: principles and signal analysis
go back to reference Byers CP (2018) Theoretical and experimental investigations of similarity solutions in turbulent flows. PhD thesis, Princeton University Byers CP (2018) Theoretical and experimental investigations of similarity solutions in turbulent flows. PhD thesis, Princeton University
go back to reference Comte-Bellot G (1976) Hot-wire anemometry. Annu Rev Fluid Mech 8(1):209–231CrossRef Comte-Bellot G (1976) Hot-wire anemometry. Annu Rev Fluid Mech 8(1):209–231CrossRef
go back to reference Dewey CF Jr (1965) A correlation of convective heat transfer and recovery temperature data for cylinders in compressible flow. Int J Heat Mass Transfer 8(2):245–252CrossRef Dewey CF Jr (1965) A correlation of convective heat transfer and recovery temperature data for cylinders in compressible flow. Int J Heat Mass Transfer 8(2):245–252CrossRef
go back to reference Fan Y, Arwatz G, Van Buren T, Hoffman D, Hultmark M (2015) Nanoscale sensing devices for turbulence measurements. Exp Fluids 56(7):138CrossRef Fan Y, Arwatz G, Van Buren T, Hoffman D, Hultmark M (2015) Nanoscale sensing devices for turbulence measurements. Exp Fluids 56(7):138CrossRef
go back to reference Hultmark M, Ashok A, Smits AJ (2011) A new criterion for end-conduction effects in hot-wire anemometry. Meas Sci Technol 22(5):055401CrossRef Hultmark M, Ashok A, Smits AJ (2011) A new criterion for end-conduction effects in hot-wire anemometry. Meas Sci Technol 22(5):055401CrossRef
go back to reference Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme Reynolds numbers. Phys Rev Lett 108(9):094501CrossRef Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme Reynolds numbers. Phys Rev Lett 108(9):094501CrossRef
go back to reference Hutchins N, Monty JP, Hultmark M, Smits AJ (2015) A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence. Exp Fluids 56(1):18CrossRef Hutchins N, Monty JP, Hultmark M, Smits AJ (2015) A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence. Exp Fluids 56(1):18CrossRef
go back to reference King LV (1914) XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Phil Trans R Soc Lond A 214(509–522):373–432CrossRef King LV (1914) XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Phil Trans R Soc Lond A 214(509–522):373–432CrossRef
go back to reference Kovasznay LS (1950) The hot-wire anemometer in supersonic flow. J Aeronaut Sci 17(9):565–572CrossRef Kovasznay LS (1950) The hot-wire anemometer in supersonic flow. J Aeronaut Sci 17(9):565–572CrossRef
go back to reference Kovasznay LS (1953) Turbulence in supersonic flow. J Aeronaut Sci 20(10):657–674CrossRef Kovasznay LS (1953) Turbulence in supersonic flow. J Aeronaut Sci 20(10):657–674CrossRef
go back to reference Laufer J, McClellan R (1956) Measurements of heat transfer from fine wires in supersonic flows. J Fluid Mech 1(3):276–289CrossRef Laufer J, McClellan R (1956) Measurements of heat transfer from fine wires in supersonic flows. J Fluid Mech 1(3):276–289CrossRef
go back to reference Li JD, McKeon BJ, Jiang W, Morrison JF, Smits AJ (2004) The response of hot wires in high Reynolds-number turbulent pipe flow. Meas Sci Technol 15(5):789CrossRef Li JD, McKeon BJ, Jiang W, Morrison JF, Smits AJ (2004) The response of hot wires in high Reynolds-number turbulent pipe flow. Meas Sci Technol 15(5):789CrossRef
go back to reference Morkovin MV (1956) Fluctuations and hot-wire anemometry in compressible flows. North Atlantic Treaty Organization Advisory Group for Aeronautical Research and Development Morkovin MV (1956) Fluctuations and hot-wire anemometry in compressible flows. North Atlantic Treaty Organization Advisory Group for Aeronautical Research and Development
go back to reference Oppenheim A (1953) Generalized theory of convective heat transfer in a free-molecule flow. J Aeronaut Sci 20(1):49–58CrossRef Oppenheim A (1953) Generalized theory of convective heat transfer in a free-molecule flow. J Aeronaut Sci 20(1):49–58CrossRef
go back to reference Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, New YorkCrossRef Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J (2018) Particle image velocimetry: a practical guide. Springer, New YorkCrossRef
go back to reference Rapp BE (2016) Microfluidics: modeling, mechanics and mathematics. William Andrew, AmsterdamMATH Rapp BE (2016) Microfluidics: modeling, mechanics and mathematics. William Andrew, AmsterdamMATH
go back to reference Sarma GR (1993) Analysis of a constant voltage anemometer circuit. In: 1993 IEEE instrumentation and measurement technology conference, IEEE, pp 731–736 Sarma GR (1993) Analysis of a constant voltage anemometer circuit. In: 1993 IEEE instrumentation and measurement technology conference, IEEE, pp 731–736
go back to reference Scharnowski S, Bross M, Kähler CJ (2019) Accurate turbulence level estimations using PIV/PTV. Exp Fluids 60(1):1CrossRef Scharnowski S, Bross M, Kähler CJ (2019) Accurate turbulence level estimations using PIV/PTV. Exp Fluids 60(1):1CrossRef
go back to reference Sheplak M, Spina EF, McGinley CB (1996) Progress in hot-film anemometry for hypersonic flow. Exp Thermal Fluid Sci 13(1):21–28CrossRef Sheplak M, Spina EF, McGinley CB (1996) Progress in hot-film anemometry for hypersonic flow. Exp Thermal Fluid Sci 13(1):21–28CrossRef
go back to reference Smits AJ, Hayakawa K, Muck KC (1983) Constant temperature hot-wire anemometer practice in supersonic flows. Exp Fluids 1(2):83–92CrossRef Smits AJ, Hayakawa K, Muck KC (1983) Constant temperature hot-wire anemometer practice in supersonic flows. Exp Fluids 1(2):83–92CrossRef
go back to reference Stalder JR, Goodwin G, Creager MO (1951) A comparison of theory and experiment for high-speed free-molecule flow Stalder JR, Goodwin G, Creager MO (1951) A comparison of theory and experiment for high-speed free-molecule flow
go back to reference Stalder JR, Goodwin G, Creager MO (1952) Heat transfer to bodies in a high-speed rarified-gas stream Stalder JR, Goodwin G, Creager MO (1952) Heat transfer to bodies in a high-speed rarified-gas stream
go back to reference Vallikivi M, Smits AJ (2014) Fabrication and characterization of a novel nanoscale thermal anemometry probe. J Microelectromech Syst 23(4):899–907CrossRef Vallikivi M, Smits AJ (2014) Fabrication and characterization of a novel nanoscale thermal anemometry probe. J Microelectromech Syst 23(4):899–907CrossRef
go back to reference Vallikivi M, Hultmark M, Bailey SCC, Smits AJ (2011) Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. Exp Fluids 51(6):1521–1527CrossRef Vallikivi M, Hultmark M, Bailey SCC, Smits AJ (2011) Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. Exp Fluids 51(6):1521–1527CrossRef
go back to reference Wallace JM, Foss JF (1995) The measurement of vorticity in turbulent flows. Annu Rev Fluid Mech 27(1):469–514CrossRef Wallace JM, Foss JF (1995) The measurement of vorticity in turbulent flows. Annu Rev Fluid Mech 27(1):469–514CrossRef
go back to reference Wittmer KS, Devenport WJ, Zsoldos JS (1998) A four-sensor hot-wire probe system for three-component velocity measurement. Exp Fluids 24(5–6):416–423CrossRef Wittmer KS, Devenport WJ, Zsoldos JS (1998) A four-sensor hot-wire probe system for three-component velocity measurement. Exp Fluids 24(5–6):416–423CrossRef
Metadata
Title
Development of a nanoscale hot-wire probe for supersonic flow applications
Authors
K. Kokmanian
S. Scharnowski
M. Bross
S. Duvvuri
M. K. Fu
C. J. Kähler
M. Hultmark
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 10/2019
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-019-2797-z

Other articles of this Issue 10/2019

Experiments in Fluids 10/2019 Go to the issue

Premium Partners