Skip to main content
Top
Published in: Experiments in Fluids 10/2019

01-10-2019 | Research Article

Spectral signal quality of fast pressure sensitive paint measurements in turbulent shock-wave/boundary layer interactions

Authors: Morgan L. Funderburk, Venkateswaran Narayanaswamy

Published in: Experiments in Fluids | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study presents a critical investigation of the signal quality obtained using candidate fast pressure sensitive paint measurements in realistic, spectrally complex flows. The evaluations focus on characterizing the importance of the paint layer frequency response in conjunction with the fundamental signal-to-noise ratio limitations of the imaging system. Fast fluoro-isopropyl-butyl polymer-based paint is used primarily because of an identified characteristic attenuation pattern. Complementary high-speed pressure sensitive paint and wall static pressure measurements are performed in a turbulent, separated, scooped compression ramp shock-wave/boundary layer interaction at Mach 2.5 using a sampling rate of 4 kHz. The results reveal a systematic underprediction of the RMS pressure due to the limited frequency response of the paint. A simple frequency domain correction methodology utilizing the experimental data and a diffusion-based model of the paint response are employed to compensate for these effects. A method for determining the spectral signal-to-noise ratio of the imaging system is then presented, which is found to impose a major constraint on the upper limit of the resolvable pressure frequency. The correction is observed to provide a significant improvement in the agreement between the pressure sensitive paint and transducers, but only below the noise-dominated cutoff frequency. The relative significance of these factors is then investigated for polymer–ceramic-based, 8 kHz measurements of a planar compression ramp shock-wave/boundary layer interaction in a rectangular channel.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Babinsky H, Harvey J (2011) Shock wave-boundary layer interactions. Cambridge University Press, CambridgeCrossRef Babinsky H, Harvey J (2011) Shock wave-boundary layer interactions. Cambridge University Press, CambridgeCrossRef
go back to reference Babinksy H, Oorebeek J, Cottingham T (2013) Corner effects in reflecting oblique shock-wave/boundary layer interactions. In: 51st AIAA aerospace sciences conference Babinksy H, Oorebeek J, Cottingham T (2013) Corner effects in reflecting oblique shock-wave/boundary layer interactions. In: 51st AIAA aerospace sciences conference
go back to reference Bendat J, Piersol A (1986) Random data, 2nd edn. Wiley, West SussexMATH Bendat J, Piersol A (1986) Random data, 2nd edn. Wiley, West SussexMATH
go back to reference Bruce P, Burton D, Titchener N, Babinksy H (2011) Corner effect and separation in transonic channel flows. J Fluid Mech 679:247–262CrossRef Bruce P, Burton D, Titchener N, Babinksy H (2011) Corner effect and separation in transonic channel flows. J Fluid Mech 679:247–262CrossRef
go back to reference Brusniak L, Dolling D (1994) Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions. J Fluid Mech 273:375–409CrossRef Brusniak L, Dolling D (1994) Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions. J Fluid Mech 273:375–409CrossRef
go back to reference Burton D, Babinsky H (2012) Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels. J Fluid Mech 707:287–306CrossRef Burton D, Babinsky H (2012) Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels. J Fluid Mech 707:287–306CrossRef
go back to reference Burton D, Babinsky H, Bruce P (2010) Experimental investigation into parameters governing corner interactions for transonic shock wave/boundary layer interactions. In: AIAA paper 2010-871 Burton D, Babinsky H, Bruce P (2010) Experimental investigation into parameters governing corner interactions for transonic shock wave/boundary layer interactions. In: AIAA paper 2010-871
go back to reference Carroll B, Winslow N, Setzer F (1997) Mass diffusivity of pressure sensitive paints via system identification. In: AIAA Paper 97-0771 Carroll B, Winslow N, Setzer F (1997) Mass diffusivity of pressure sensitive paints via system identification. In: AIAA Paper 97-0771
go back to reference Clemens NT, Narayanaswamy V (2014) Low-frequency unsteadiness of shock wave/boundary layer interactions. Annu Rev Fluid Mech 46:469–492MathSciNetCrossRef Clemens NT, Narayanaswamy V (2014) Low-frequency unsteadiness of shock wave/boundary layer interactions. Annu Rev Fluid Mech 46:469–492MathSciNetCrossRef
go back to reference Dolling D (1993) Fluctuating loads in shock wave/turbulent boundary layer interaction: tutorial and update. In: 31st aerospace sciences meeting Dolling D (1993) Fluctuating loads in shock wave/turbulent boundary layer interaction: tutorial and update. In: 31st aerospace sciences meeting
go back to reference Dolling D, Or C (1985) Unsteadiness of shock wave structure in attached and separated compression ramp flows. Exp Fluids 3:24–32CrossRef Dolling D, Or C (1985) Unsteadiness of shock wave structure in attached and separated compression ramp flows. Exp Fluids 3:24–32CrossRef
go back to reference Drouillard T, Linne M (2005) Luminescence lifetime response of pressure-sensitive paint to a pressure transient. AIAA J 43(5):1100–1108CrossRef Drouillard T, Linne M (2005) Luminescence lifetime response of pressure-sensitive paint to a pressure transient. AIAA J 43(5):1100–1108CrossRef
go back to reference Dupont P, Haddad C, Ardissone J, Debieve J (2005) Space and time organisation of a shock wave/turbulent boundary layer interaction. Aerosp Sci Technol 9:561–572CrossRef Dupont P, Haddad C, Ardissone J, Debieve J (2005) Space and time organisation of a shock wave/turbulent boundary layer interaction. Aerosp Sci Technol 9:561–572CrossRef
go back to reference Egami Y, Sato Y, Konishi S (2019) Development of sprayable pressure-sensitive paint with a response time of less than 10 $\mu $s. AIAA J 57:2198–2203CrossRef Egami Y, Sato Y, Konishi S (2019) Development of sprayable pressure-sensitive paint with a response time of less than 10 $\mu $s. AIAA J 57:2198–2203CrossRef
go back to reference Fernholz H, Finley P (1977) A critical compilation of compressible turbulent boundary layer data. In: AGARD-AG-223 Fernholz H, Finley P (1977) A critical compilation of compressible turbulent boundary layer data. In: AGARD-AG-223
go back to reference Funderburk M, Narayanaswamy V (2016a) Experimental investigation of primary and corner shock boundary layer interactions at mild back pressure ratios. Phys Fluids 28:086102CrossRef Funderburk M, Narayanaswamy V (2016a) Experimental investigation of primary and corner shock boundary layer interactions at mild back pressure ratios. Phys Fluids 28:086102CrossRef
go back to reference Funderburk M, Narayanaswamy V (2016b) Experimental investigation of corner shock boundary layer interactions. In: 46th AIAA fluid dynamics conference Funderburk M, Narayanaswamy V (2016b) Experimental investigation of corner shock boundary layer interactions. In: 46th AIAA fluid dynamics conference
go back to reference Funderburk M, Narayanaswamy V (2017) Experimental investigation of shock boundary layer interactions in axisymmetric isolator geometries. In: 53rd AIAA joint propulsion conference Funderburk M, Narayanaswamy V (2017) Experimental investigation of shock boundary layer interactions in axisymmetric isolator geometries. In: 53rd AIAA joint propulsion conference
go back to reference Funderburk M, Narayanaswamy V (2018a) Investigation of negative surface curvature effects in an axisymmetric shock boundary layer interaction. AIAA J 57:1594–1607CrossRef Funderburk M, Narayanaswamy V (2018a) Investigation of negative surface curvature effects in an axisymmetric shock boundary layer interaction. AIAA J 57:1594–1607CrossRef
go back to reference Funderburk M, Narayanaswamy V (2018b) Experimental investigation of microramp vortex generator application upstream of an axisymmetric shock boundary layer interaction. In: 54th AIAA joint propulsion conference Funderburk M, Narayanaswamy V (2018b) Experimental investigation of microramp vortex generator application upstream of an axisymmetric shock boundary layer interaction. In: 54th AIAA joint propulsion conference
go back to reference Gramann R, Dolling DS (1989) Dynamics of separation and reattachment in a mach 5 compression ramp-induced shock wave turbulent boundary layer interaction. In: ARO 23763.3-EG-F Gramann R, Dolling DS (1989) Dynamics of separation and reattachment in a mach 5 compression ramp-induced shock wave turbulent boundary layer interaction. In: ARO 23763.3-EG-F
go back to reference Gregory J, Sullivan J (2006) Effect of quenching kinetics on unsteady response of pressure-sensitive paint. AIAA J 44(3):634–645CrossRef Gregory J, Sullivan J (2006) Effect of quenching kinetics on unsteady response of pressure-sensitive paint. AIAA J 44(3):634–645CrossRef
go back to reference Gregory J, Asai K, Kameda M, Liu T, Sullivan J (2008) A review of pressure-sensitive paint for high-speed and unsteady aerodynamics. Proc IMechE Rev 222:249–290CrossRef Gregory J, Asai K, Kameda M, Liu T, Sullivan J (2008) A review of pressure-sensitive paint for high-speed and unsteady aerodynamics. Proc IMechE Rev 222:249–290CrossRef
go back to reference Gregory J, Sakaue H, Liu T, Sullivan J (2014) Fast pressure-sensitive paint for flow and acoustic diagnostics. Annu Rev Fluid Mech 46:303–330MathSciNetCrossRef Gregory J, Sakaue H, Liu T, Sullivan J (2014) Fast pressure-sensitive paint for flow and acoustic diagnostics. Annu Rev Fluid Mech 46:303–330MathSciNetCrossRef
go back to reference Kameda M (2012) Effect of luminescence limetime on the frequency resonse of fast-response pressure sensitive paints. Trans Jpn Soc Mech Eng Ser B 78:1942–1950CrossRef Kameda M (2012) Effect of luminescence limetime on the frequency resonse of fast-response pressure sensitive paints. Trans Jpn Soc Mech Eng Ser B 78:1942–1950CrossRef
go back to reference Korkegi R (1975) Comparison of shock induced two and three-dimensional incipient turbulent separation. AIAA J 13:534–535CrossRef Korkegi R (1975) Comparison of shock induced two and three-dimensional incipient turbulent separation. AIAA J 13:534–535CrossRef
go back to reference Liu T, Guille M, Sullivan J (2001) Accuracy of pressure-sensitive paint. AIAA J 39(1):103–112CrossRef Liu T, Guille M, Sullivan J (2001) Accuracy of pressure-sensitive paint. AIAA J 39(1):103–112CrossRef
go back to reference Mears L, Arora N, Alvi F (2019) Flowfield response to controlled perturbations in swept shock/boundary-layer interaction using unsteady PSP. In: AIAA Scitech 2019 forum Mears L, Arora N, Alvi F (2019) Flowfield response to controlled perturbations in swept shock/boundary-layer interaction using unsteady PSP. In: AIAA Scitech 2019 forum
go back to reference Mosharov V, Radchenko V, Fonov S (1997) Luminescent pressure sensors in aerodynamic experiment. Central Aerohydrodynamic Inst., CWA International Corp Mosharov V, Radchenko V, Fonov S (1997) Luminescent pressure sensors in aerodynamic experiment. Central Aerohydrodynamic Inst., CWA International Corp
go back to reference Pandey A, Gregory J (2016) Frequency-response characteristics of polymer/ceramic pressure-sensitive paint. AIAA J 54:174–185CrossRef Pandey A, Gregory J (2016) Frequency-response characteristics of polymer/ceramic pressure-sensitive paint. AIAA J 54:174–185CrossRef
go back to reference Priebe S, Martin M (2012) Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. J Fluid Mech 699:1–49CrossRef Priebe S, Martin M (2012) Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. J Fluid Mech 699:1–49CrossRef
go back to reference Sakaue H (1999a) Porous pressure sensitive paints for aerodynamic applications. MS Thesis, School of Aeronautics and Astronautics, Purdue University Sakaue H (1999a) Porous pressure sensitive paints for aerodynamic applications. MS Thesis, School of Aeronautics and Astronautics, Purdue University
go back to reference Sakaue H (1999b) Anodized aluminum pressure sensitive paint for unsteady aerodynamic applications. PhD Dissertation, School of Aeronautics and Astronautics, Purdue University Sakaue H (1999b) Anodized aluminum pressure sensitive paint for unsteady aerodynamic applications. PhD Dissertation, School of Aeronautics and Astronautics, Purdue University
go back to reference Sakaue H, Sullivan J, Asai K, Iijima Y, Kunimasu T (1999) Anodized aluminum pressure sensitive paint in a cryogenic wind tunnel. In: Instrumentationin the aerospace industry, Proceedings of the 45th international instrumentation symposium. Instrument Society of America, pp 337–346 Sakaue H, Sullivan J, Asai K, Iijima Y, Kunimasu T (1999) Anodized aluminum pressure sensitive paint in a cryogenic wind tunnel. In: Instrumentationin the aerospace industry, Proceedings of the 45th international instrumentation symposium. Instrument Society of America, pp 337–346
go back to reference Schairer E (2001) Optimum thickness of pressure-sensitive paint. AIAA J 40:11 Schairer E (2001) Optimum thickness of pressure-sensitive paint. AIAA J 40:11
go back to reference Sugimoto T, Sugioka Y, Numata D, Nagai H, Asai K (2017) Characterization of frequency response of pressure-sensitive paints. AIAA J 55:1460–1464CrossRef Sugimoto T, Sugioka Y, Numata D, Nagai H, Asai K (2017) Characterization of frequency response of pressure-sensitive paints. AIAA J 55:1460–1464CrossRef
go back to reference Sun C, Childs M (1976) Wall-wake velocity profile for compressible nonadiabatic flows. AIAA J 14:820–822CrossRef Sun C, Childs M (1976) Wall-wake velocity profile for compressible nonadiabatic flows. AIAA J 14:820–822CrossRef
go back to reference Winslow N, Carroll B, Setzer F (1996) Frequency response of pressure sensitive paints. In: AIAA Paper 96-1967 Winslow N, Carroll B, Setzer F (1996) Frequency response of pressure sensitive paints. In: AIAA Paper 96-1967
go back to reference Winslow N, Carroll B, Kurdila A (2001) Model development and analysis of the dynamics of pressure-sensitive paints. AIAA J 39(4):660–666CrossRef Winslow N, Carroll B, Kurdila A (2001) Model development and analysis of the dynamics of pressure-sensitive paints. AIAA J 39(4):660–666CrossRef
Metadata
Title
Spectral signal quality of fast pressure sensitive paint measurements in turbulent shock-wave/boundary layer interactions
Authors
Morgan L. Funderburk
Venkateswaran Narayanaswamy
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 10/2019
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-019-2799-x

Other articles of this Issue 10/2019

Experiments in Fluids 10/2019 Go to the issue

Premium Partners