Skip to main content
Top
Published in: Electrical Engineering 1/2017

19-09-2016 | Original Paper

Development of an optical fiber-based interferometer for strain measurements in non-destructive application

Author: S. Pullteap

Published in: Electrical Engineering | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, an extrinsic Fabry–Perot interferometer (EFPI) has been demonstrated for strain measurements. A monochromatic light source with a wavelength of 1310 nm is propagated into a single-mode fiber and then passed through the sensing arm. Approximately, 4 % of the beam is reflected off at the fiber end generating the “reference signal”, while the rest is next transmitted to the target and reflected back to the sensing arm as the “sensing beam”. The interference signal is, however, generated from the superposition between two beams (reference and sensing signals) in the fiber arm. The number of interference signal also called “fringe” is, normally, directly proportional to the displacement of the target movement. Fringe counting technique is also proposed for demodulating the fringe number to the displacement information. Consequently, the displacement is then converted to the strain value by referring to a basic of strain theory. A cantilever beam fastened to a mechanical wave driver has been utilized as a vibrator for the experimental studies. Two experiments have been investigated for the sensor performance’s study. By varying the frequency excitation from 60 to 180 Hz, and also the amplitude excitation from 0.25 to 5 V, the output strain range of 0.082–1.556 and 0.246–2.702 \(\upmu \varepsilon \) has been apparent, respectively. In addition, a commercial strain sensor has also been used as a reference, leading to an average percentage error of 1.563 %.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ashby M, Shercliff H, Cebon D (2014) Material engineering, science, processing and design. Elsevier, UK Ashby M, Shercliff H, Cebon D (2014) Material engineering, science, processing and design. Elsevier, UK
2.
go back to reference Mukhopadhyay SC, Jayasundra KP, Funchs A (2013) Advancement in sensing technology: new developments and development applications. Springer-Verlag, Berlin, HeidelbergCrossRef Mukhopadhyay SC, Jayasundra KP, Funchs A (2013) Advancement in sensing technology: new developments and development applications. Springer-Verlag, Berlin, HeidelbergCrossRef
3.
go back to reference Antune P, Lim H, Varum H, André P (2012) Optical fiber sensors for static and dynamic health monitoring of civil engineering infrastructures: abode wall case study. Measurement 45:1695–1705CrossRef Antune P, Lim H, Varum H, André P (2012) Optical fiber sensors for static and dynamic health monitoring of civil engineering infrastructures: abode wall case study. Measurement 45:1695–1705CrossRef
4.
go back to reference Udd E (1991) Fiber optic sensor: an introduction for engineers and scientists. Wiley, New York Udd E (1991) Fiber optic sensor: an introduction for engineers and scientists. Wiley, New York
5.
go back to reference Grattan KTV, Meggitt BT (1998) Optical fiber sensor technology: devices and technology. Chapman & Hall, LondonCrossRef Grattan KTV, Meggitt BT (1998) Optical fiber sensor technology: devices and technology. Chapman & Hall, LondonCrossRef
6.
go back to reference Dornband B, Muller H, Gross H (2012) Handbook of optical systems. Willey-VCH Verlag GmbH & Co KGaA, Germany Dornband B, Muller H, Gross H (2012) Handbook of optical systems. Willey-VCH Verlag GmbH & Co KGaA, Germany
7.
go back to reference Sun Q, Liu D, Wang J, Liu H (2008) Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer. J Opt Commun 281:1538–1544CrossRef Sun Q, Liu D, Wang J, Liu H (2008) Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer. J Opt Commun 281:1538–1544CrossRef
8.
go back to reference Santos JL, Farahi F (2015) Handbook of optical sensors. CRC Press, New York Santos JL, Farahi F (2015) Handbook of optical sensors. CRC Press, New York
9.
go back to reference Pullteap S, Seat H (2015) An extrinsic fiber fabry-perot interferometer for dynamic displacement measurement. Photonic Sens 5–1:50–59CrossRef Pullteap S, Seat H (2015) An extrinsic fiber fabry-perot interferometer for dynamic displacement measurement. Photonic Sens 5–1:50–59CrossRef
10.
go back to reference Pullteap S (2012) Development of an optical fiber based interferometer for small vibration measurements. In: IEEE International conference on optical communications and networks (ICOCN), pp 107–110 Pullteap S (2012) Development of an optical fiber based interferometer for small vibration measurements. In: IEEE International conference on optical communications and networks (ICOCN), pp 107–110
11.
go back to reference Udd E, Spillman WB (2011) Fiber optic sensors: an introduction for engineers and scientist. Wiley, New JerseyCrossRef Udd E, Spillman WB (2011) Fiber optic sensors: an introduction for engineers and scientist. Wiley, New JerseyCrossRef
13.
go back to reference Udd E (2006) Fiber optic sensors: an introduction to for engineers and scientists. Wiley, New Jersey Udd E (2006) Fiber optic sensors: an introduction to for engineers and scientists. Wiley, New Jersey
14.
go back to reference Hernandez G (1986) Fabry-Perot interferometers. Cambridge University Press, Cambridge Hernandez G (1986) Fabry-Perot interferometers. Cambridge University Press, Cambridge
15.
go back to reference Mihailov SJ (2012) Fiber Bragg grating sensors for harsh environments. Sensors 12:1898–1918CrossRef Mihailov SJ (2012) Fiber Bragg grating sensors for harsh environments. Sensors 12:1898–1918CrossRef
16.
go back to reference Sun H, Yang S, Zhang X, Yuan L, Yang Z, Hu M (2015) Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach-Zehnder interferometer. Opt Commun 340:39–43CrossRef Sun H, Yang S, Zhang X, Yuan L, Yang Z, Hu M (2015) Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach-Zehnder interferometer. Opt Commun 340:39–43CrossRef
17.
go back to reference Bravo M, Pinto AMR, Lopez-Amo M, Kobelke J, Schuster K (2012) High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer. Opt Lett 2:202–204CrossRef Bravo M, Pinto AMR, Lopez-Amo M, Kobelke J, Schuster K (2012) High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer. Opt Lett 2:202–204CrossRef
18.
go back to reference Lee BH, Kim YH, Park KS, Eom JB, Kim MJ, Rho BS, Choi HY (2012) Interferometric fiber optic sensors. Sensors 12:2467–2486CrossRef Lee BH, Kim YH, Park KS, Eom JB, Kim MJ, Rho BS, Choi HY (2012) Interferometric fiber optic sensors. Sensors 12:2467–2486CrossRef
19.
go back to reference Li Lecheng, Xia Li, Xie Zhenhai, Liu Deming (2012) All-fiber Mach-Zehnder interferometers for sensing applications. Opt Exp 20:11109–11120CrossRef Li Lecheng, Xia Li, Xie Zhenhai, Liu Deming (2012) All-fiber Mach-Zehnder interferometers for sensing applications. Opt Exp 20:11109–11120CrossRef
20.
go back to reference Habel WR, Krebber K (2011) Fiber-optic sensor applications in civil and geotechnical engineering. Photonic Sens 1:268–280CrossRef Habel WR, Krebber K (2011) Fiber-optic sensor applications in civil and geotechnical engineering. Photonic Sens 1:268–280CrossRef
21.
go back to reference Her SC, Huang CY (2011) Effect of coating on the strain transfer of optical fiber sensors. Sensors 11:6926–6941CrossRef Her SC, Huang CY (2011) Effect of coating on the strain transfer of optical fiber sensors. Sensors 11:6926–6941CrossRef
22.
go back to reference Figliola RS, Beasley D (2015) Theory and design for mechanical measurements. Willey, USA Figliola RS, Beasley D (2015) Theory and design for mechanical measurements. Willey, USA
23.
go back to reference Ye L, Feng P, Yue Q (2011) Advances in FRP composites in civil engineering. Tsinghua University Press, BeijingCrossRef Ye L, Feng P, Yue Q (2011) Advances in FRP composites in civil engineering. Tsinghua University Press, BeijingCrossRef
Metadata
Title
Development of an optical fiber-based interferometer for strain measurements in non-destructive application
Author
S. Pullteap
Publication date
19-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 1/2017
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-016-0435-9

Other articles of this Issue 1/2017

Electrical Engineering 1/2017 Go to the issue