Skip to main content
Top
Published in: Colloid and Polymer Science 6/2017

21-04-2017 | Original Contribution

Development of InP-based polymer nanocomposites by wet route for optoelectronic devices

Authors: Shailesh Narain Sharma, Akanksha Singh, Shefali Jain

Published in: Colloid and Polymer Science | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the effect of surface passivation of InP quantum dots (QDs) synthesized by the unconventional tri-n-octyl phosphine (TOP) route, on the structural and optoelectronic properties of their respective polymer nanocomposites, has been demonstrated by dispersing untreated and nascent hydrogen-treated InP QDs in P3HT polymer matrix, respectively. The surface passivation of InP QDs imparts photostability to its corresponding polymer–InP composite as a consequence of a better hydrogen passivation of defects acting as non-radiative recombination centres and can be achieved by employing a simple post-synthesis chemical treatment which is fast, reliable and reproducible. Here, with the distinctive usage of TOP both as a capping ligand and a source of phosphorus in conjunction with a novel chemical treatment, the quantum yield of InP QDs can be significantly enhanced and promotes charge transfer across donor (polymer)–acceptor (InP QDs) interface as supported by photoluminescence (PL) quenching studies as well. The increment in PL intensity upon incorporation of untreated InP QDs into the P3HT polymer matrix can be attributed to the dominance of Förster energy transfer between host P3HT polymer (donor) and guest InP nanocrystals (acceptors) in polymer/InP (untreated) composites. The mechanisms of energy and charge transfer in polymer–InP (u/t) based composites is depicted pictorally. The importance of these two different processes observed in polymer/InP (untreated) and polymer/InP (treated) composites is that it makes them useful for organic optoelectronic, i.e. electroluminescent and photovoltaic devices, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kumari K, Kumar U, Sharma SN, Chand S, Kakkar R, Vankar VD, Kumar V (2008a) J Phys D Appl Phys 41:235409CrossRef Kumari K, Kumar U, Sharma SN, Chand S, Kakkar R, Vankar VD, Kumar V (2008a) J Phys D Appl Phys 41:235409CrossRef
2.
go back to reference Kumari K, Chand S, Kumar P, Sharma SN, Vankar VD, Kumar V (2008b) Appl Phys Letts 92:263504CrossRef Kumari K, Chand S, Kumar P, Sharma SN, Vankar VD, Kumar V (2008b) Appl Phys Letts 92:263504CrossRef
3.
go back to reference Kumar U, Kumari K, Sharma SN, Kumar M, Vankar VD, Kakkar R, Kumar V (2010) Coll Polym Sci 288:841–849CrossRef Kumar U, Kumari K, Sharma SN, Kumar M, Vankar VD, Kakkar R, Kumar V (2010) Coll Polym Sci 288:841–849CrossRef
4.
go back to reference Sharma H, Sharma SN, Singh G, Shivaprasad SM (2007) Coll. Polym. Sci. 285:1213–1227CrossRef Sharma H, Sharma SN, Singh G, Shivaprasad SM (2007) Coll. Polym. Sci. 285:1213–1227CrossRef
5.
go back to reference Kumar U, Sharma SN, Singh S, Kar M, Singh VN, Mehta BR, Kakkar R (2009) Mat Chem and Phys 113:107–114CrossRef Kumar U, Sharma SN, Singh S, Kar M, Singh VN, Mehta BR, Kakkar R (2009) Mat Chem and Phys 113:107–114CrossRef
7.
go back to reference Yen YT, Lin Y-K, Chang S-H, Hong H-F, Tuan H-Y, Chueh Y-L (2013) Nanoscale Res Lett 8:1CrossRef Yen YT, Lin Y-K, Chang S-H, Hong H-F, Tuan H-Y, Chueh Y-L (2013) Nanoscale Res Lett 8:1CrossRef
8.
go back to reference Gearba RI, Mills T, Morris J, Pindak R, Black CT, Zhu X (2011) Adv Funct Mater 21:2666CrossRef Gearba RI, Mills T, Morris J, Pindak R, Black CT, Zhu X (2011) Adv Funct Mater 21:2666CrossRef
9.
go back to reference Yong K-T, Ding H, Roy I, Law W-C, Bergey EJ, Maitra A, Prasad PN (2009) ACSNano 3:502 Yong K-T, Ding H, Roy I, Law W-C, Bergey EJ, Maitra A, Prasad PN (2009) ACSNano 3:502
10.
go back to reference Yang X, Zhao D, Leck KS, Tan ST, Tang YX, Zhao J, Demir HV, Sun XW (2012) Adv Mater 24:4180CrossRef Yang X, Zhao D, Leck KS, Tan ST, Tang YX, Zhao J, Demir HV, Sun XW (2012) Adv Mater 24:4180CrossRef
12.
go back to reference Carrillo-Carrión C, Cárdenas S, Simonet BM, Valcárcel M (2009) Chem Comm:5214–5226 Carrillo-Carrión C, Cárdenas S, Simonet BM, Valcárcel M (2009) Chem Comm:5214–5226
13.
go back to reference Micic O, Cheong H, Fu H, Zunger A, Sprague J, Mascarenhas A, Nozik A (1997) J Phys Chem B 101:4904CrossRef Micic O, Cheong H, Fu H, Zunger A, Sprague J, Mascarenhas A, Nozik A (1997) J Phys Chem B 101:4904CrossRef
14.
go back to reference Khanna P, Jun K-W, Hong KB, Baeg J-O, Mehrotra G (2005) Mats Chem Phys 92:54CrossRef Khanna P, Jun K-W, Hong KB, Baeg J-O, Mehrotra G (2005) Mats Chem Phys 92:54CrossRef
16.
17.
19.
go back to reference Efros Al L, Efros AL (1982) Sov Phys Semicond 16:772 Efros Al L, Efros AL (1982) Sov Phys Semicond 16:772
20.
go back to reference Sharma SN, Sharma H, Singh G, Shivaprasad SM (2008) Mat Chem & Phys 110:471–480CrossRef Sharma SN, Sharma H, Singh G, Shivaprasad SM (2008) Mat Chem & Phys 110:471–480CrossRef
21.
go back to reference Yin J, Kumar M, Lei Q, Ma L, Raavi SSK, Gurzadyan GG, Soci C (2015) J Phys Chem C 119:26783–26792CrossRef Yin J, Kumar M, Lei Q, Ma L, Raavi SSK, Gurzadyan GG, Soci C (2015) J Phys Chem C 119:26783–26792CrossRef
22.
23.
go back to reference Mehta A, Sharma SN, Chawla P, Chand S (2014) Colloid Polym Sci 292:301–315CrossRef Mehta A, Sharma SN, Chawla P, Chand S (2014) Colloid Polym Sci 292:301–315CrossRef
24.
go back to reference Vandewal K, Tvingstedt K, Gadisa A, Inganas O, Manca JV (2009) Nat Mater 8:904–909CrossRef Vandewal K, Tvingstedt K, Gadisa A, Inganas O, Manca JV (2009) Nat Mater 8:904–909CrossRef
25.
26.
go back to reference Rogach AL, Klar TA, Lupton JM, Meijerink A, Feldmann J (2009) J Mater Chem 19:1208–1221CrossRef Rogach AL, Klar TA, Lupton JM, Meijerink A, Feldmann J (2009) J Mater Chem 19:1208–1221CrossRef
27.
go back to reference Sharma SN, Pillai ZS, Kamat PV (2003) 107:10088–10093. Sharma SN, Pillai ZS, Kamat PV (2003) 107:10088–10093.
Metadata
Title
Development of InP-based polymer nanocomposites by wet route for optoelectronic devices
Authors
Shailesh Narain Sharma
Akanksha Singh
Shefali Jain
Publication date
21-04-2017
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 6/2017
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-017-4071-3

Other articles of this Issue 6/2017

Colloid and Polymer Science 6/2017 Go to the issue

Premium Partners