Skip to main content
Top
Published in: Metal Science and Heat Treatment 1-2/2020

22-06-2020

Development of Methods for Steel Surface Deformation Nanostructuring

Authors: A. V. Makarov, R. A. Savrai, P. A. Skorynina, E. G. Volkova

Published in: Metal Science and Heat Treatment | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Results are provided for studying deformation methods of steel surface nanostructuring and hardening with martensitic, pearlitic and austenitic structures. A new method of ultrasonic impact-friction treatment is considered. Combined methods of nanostructuring treatment (friction treatment + annealing) are proposed for a metastable Cr – Ni steel. The possibility is demonstrated of activating steel saturation with nitrogen during plasma treatment due to preliminary nanostructuring friction treatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Lu and J. Lu, “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment,” Mater. Sci. Eng. A, 375, 38 – 45 (2004).CrossRef K. Lu and J. Lu, “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment,” Mater. Sci. Eng. A, 375, 38 – 45 (2004).CrossRef
2.
go back to reference N. R. Tao, M. L. Sui, J. Lu, and K. Lu, “Surface nanocrystallization of iron induced by ultrasonic shot peening,” Nanostruct. Mater., 11(4), 443 – 440 (1999).CrossRef N. R. Tao, M. L. Sui, J. Lu, and K. Lu, “Surface nanocrystallization of iron induced by ultrasonic shot peening,” Nanostruct. Mater., 11(4), 443 – 440 (1999).CrossRef
3.
go back to reference A. V. Panin (ed.) Ultrasonic Treatment of Structural Materials [in Russian], Izd. Dom. Tomsk. Gos. Univ., Tomsk (2016). A. V. Panin (ed.) Ultrasonic Treatment of Structural Materials [in Russian], Izd. Dom. Tomsk. Gos. Univ., Tomsk (2016).
4.
go back to reference Z. B. Wang, N. R. Tao, S. Li, et al., “Effect of surface nanocrystallization on friction and wear properties in low carbon steel,” Mater. Sci. Eng. A, 352(1 – 2), 144 – 149 (2003). Z. B. Wang, N. R. Tao, S. Li, et al., “Effect of surface nanocrystallization on friction and wear properties in low carbon steel,” Mater. Sci. Eng. A, 352(1 – 2), 144 – 149 (2003).
5.
go back to reference O. Unal and R. Varol, “Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening,” Appl. Surf. Sci., 351, 289 – 295 (2015).CrossRef O. Unal and R. Varol, “Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening,” Appl. Surf. Sci., 351, 289 – 295 (2015).CrossRef
6.
go back to reference S. Q. Deng, A. Godfrey, W. Liu, and C. L. Zhang, “Microstructural evolution of pure copper subjected to friction sliding deformation at room temperature,” Mater. Sci. Eng. A, 639, 448 – 455 (2015).CrossRef S. Q. Deng, A. Godfrey, W. Liu, and C. L. Zhang, “Microstructural evolution of pure copper subjected to friction sliding deformation at room temperature,” Mater. Sci. Eng. A, 639, 448 – 455 (2015).CrossRef
7.
go back to reference V. R. Baraz and O. N. Fedorenko, “Features of friction treatment of steels of the spring class,” Metalloved. Term. Obrab. Met., No. 11, 6 – 19 (2015). V. R. Baraz and O. N. Fedorenko, “Features of friction treatment of steels of the spring class,” Metalloved. Term. Obrab. Met., No. 11, 6 – 19 (2015).
8.
go back to reference S. Y. Kondrat’ev, V. I. Gorynin, and V. O. Popov, “Optimization of the parameters of the surface-hardened layer in laser quenching of components,” Welding Int., 26(8), 629 – 632 (2012).CrossRef S. Y. Kondrat’ev, V. I. Gorynin, and V. O. Popov, “Optimization of the parameters of the surface-hardened layer in laser quenching of components,” Welding Int., 26(8), 629 – 632 (2012).CrossRef
9.
go back to reference A. V. Makarov, L. G. Korshunov, and A. L. Osintseva, “RF Patent 2194773, Method for treating steel components,” Byull. Izobr. Polezn. Modeli, No. 35 (2002), A. V. Makarov, L. G. Korshunov, and A. L. Osintseva, “RF Patent 2194773, Method for treating steel components,” Byull. Izobr. Polezn. Modeli, No. 35 (2002),
10.
go back to reference A. V. Makarov and L. G. Korshunov, “Increase in hardness and wear resistance of steel surfaces hardened by laser using friction treatment,” Trenie Iznos,24(3), 301 – 306 (2003). A. V. Makarov and L. G. Korshunov, “Increase in hardness and wear resistance of steel surfaces hardened by laser using friction treatment,” Trenie Iznos,24(3), 301 – 306 (2003).
11.
go back to reference A. V. Makarov and L. G. Korshunov, “Strength and wear resistance of nanocrystalline structures of a friction surface of steel with a martensitic base,” Izv. Vysh. Uchebn. Zaved., Fizika, No. 8, 65 – 80 (2004). A. V. Makarov and L. G. Korshunov, “Strength and wear resistance of nanocrystalline structures of a friction surface of steel with a martensitic base,” Izv. Vysh. Uchebn. Zaved., Fizika, No. 8, 65 – 80 (2004).
12.
go back to reference A. V. Makarov, L. G. Korshunov, Yu. I. Malygina, and I. L. Solodova, “Increase in heat and wear resistance of hardening carbon steels with friction strengthening treatment,” Metalloved. Term. Obrab. Met., No. 3, 57 – 62 (2007). A. V. Makarov, L. G. Korshunov, Yu. I. Malygina, and I. L. Solodova, “Increase in heat and wear resistance of hardening carbon steels with friction strengthening treatment,” Metalloved. Term. Obrab. Met., No. 3, 57 – 62 (2007).
13.
go back to reference A. V. Makarov, N. A. Davydova, I. Y. Malygina, et al., “Improvement of heat and thermal wear resistance of cemented chromium-nickel steel by nanostructuring frictional treatment,” Diagn., Res. Mechan. Mater. Struct., No. 5, 49 – 66 (2016). A. V. Makarov, N. A. Davydova, I. Y. Malygina, et al., “Improvement of heat and thermal wear resistance of cemented chromium-nickel steel by nanostructuring frictional treatment,” Diagn., Res. Mechan. Mater. Struct., No. 5, 49 – 66 (2016).
14.
go back to reference A. V. Makarov and L. G. Korshunov, “Metal physics bases of nano-structuring by steel friction treatment,” Fiz. Met. Metalloved., 120(3), 327 – 336 (2019) A. V. Makarov and L. G. Korshunov, “Metal physics bases of nano-structuring by steel friction treatment,” Fiz. Met. Metalloved., 120(3), 327 – 336 (2019)
15.
go back to reference V. P. Kuznetsov, A. V. Makarov, A. E. Kiryakov, R. A Savrai, and A. V. Anikeev, “RF Patent 2458777, Method for strengthening treatment of component surfaces by smoothing,” Byull. Izobr. Polezn. Modeli, No. 23 (2012). V. P. Kuznetsov, A. V. Makarov, A. E. Kiryakov, R. A Savrai, and A. V. Anikeev, “RF Patent 2458777, Method for strengthening treatment of component surfaces by smoothing,” Byull. Izobr. Polezn. Modeli, No. 23 (2012).
16.
go back to reference V. P. Kuznetsov, A. V. Makarov, S. G. Psakh’e, et al., “Tribological aspects of nano-structured smoothing of structural steels,” Fiz. Mezomekh., 17(3), 14 – 20 (2014). V. P. Kuznetsov, A. V. Makarov, S. G. Psakh’e, et al., “Tribological aspects of nano-structured smoothing of structural steels,” Fiz. Mezomekh., 17(3), 14 – 20 (2014).
17.
go back to reference V. P. Kuznetsov, S. Y. Tarasov, and A. I. Dmitriev, “Nanostructuring burnishing and subsurface shear instability,” J. Mater. Proc. Technol., 217, 327 – 335 (2015).CrossRef V. P. Kuznetsov, S. Y. Tarasov, and A. I. Dmitriev, “Nanostructuring burnishing and subsurface shear instability,” J. Mater. Proc. Technol., 217, 327 – 335 (2015).CrossRef
18.
go back to reference V. P. Kuznetsov, I. Y., Smolin A. I. Dmitriev, et al., “Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel,” Surf. Coat. Technol., 285, 171 – 178 (2016). V. P. Kuznetsov, I. Y., Smolin A. I. Dmitriev, et al., “Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel,” Surf. Coat. Technol., 285, 171 – 178 (2016).
19.
go back to reference V. P. Kuznetsov, V. G. Gorgots, and E. M. Kuznetsova, “RF Patent 131711, Smoothing tool for nano-structuring a component surface layer,” Byull. Izobr. Polezn. Modeli, No. 24 (2013). V. P. Kuznetsov, V. G. Gorgots, and E. M. Kuznetsova, “RF Patent 131711, Smoothing tool for nano-structuring a component surface layer,” Byull. Izobr. Polezn. Modeli, No. 24 (2013).
20.
go back to reference A. V. Makarov, P. A. Skorynina, A. S. Yurovskii, and A. L. Osintseva, “Effect of production conditions of nano-structuring friction treatment on the structure and phase composition, and strength of metastable austenitic steel,” Fiz. Met. Metalloved., 118(12), 1300 – 1311 (2017). A. V. Makarov, P. A. Skorynina, A. S. Yurovskii, and A. L. Osintseva, “Effect of production conditions of nano-structuring friction treatment on the structure and phase composition, and strength of metastable austenitic steel,” Fiz. Met. Metalloved., 118(12), 1300 – 1311 (2017).
21.
go back to reference A. V. Makarov, P. A. Skorynina, E. G. Volkova, and A. L. Osintseva, “Effect of heating on th structure, phase composition, and micro-mechanical properties of metastable austenitic steel strengthened by nano-structuring and friction treatment,” Fiz. Met. Metalloved., 119(12), 1260 – 1267 (2018). A. V. Makarov, P. A. Skorynina, E. G. Volkova, and A. L. Osintseva, “Effect of heating on th structure, phase composition, and micro-mechanical properties of metastable austenitic steel strengthened by nano-structuring and friction treatment,” Fiz. Met. Metalloved., 119(12), 1260 – 1267 (2018).
22.
go back to reference A. V. Makarov, G. V. Samoilova, N. V. Gavrilov, et al., “Effect of preliminary nanostructuring frictional treatment on the efficiency of nitriding of metastable austenitic steel in electron beam plasma,” AIP Conf. Proc., 1915(030011), 1 – 5 (2017). A. V. Makarov, G. V. Samoilova, N. V. Gavrilov, et al., “Effect of preliminary nanostructuring frictional treatment on the efficiency of nitriding of metastable austenitic steel in electron beam plasma,” AIP Conf. Proc., 1915(030011), 1 – 5 (2017).
23.
go back to reference N. V. Lezhnin, A. V. Makarov, N. V. Gavrilov, et al., “Improving the scratch test properties of plasma-nitrided stainless austenitic steel by preliminary nanostructuring frictional treatment,” AIP Conf. Proc., 2053, No. 040050, 1 – 5 (2018). N. V. Lezhnin, A. V. Makarov, N. V. Gavrilov, et al., “Improving the scratch test properties of plasma-nitrided stainless austenitic steel by preliminary nanostructuring frictional treatment,” AIP Conf. Proc., 2053, No. 040050, 1 – 5 (2018).
24.
go back to reference R. A. Savrai, A. V. Makarov, I. Y. Malygina, and E. G. Volkova, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part I: Microstructure and surface properties,” Mater. Sci. Eng. A, 734, 506 – 512 (2018).CrossRef R. A. Savrai, A. V. Makarov, I. Y. Malygina, and E. G. Volkova, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part I: Microstructure and surface properties,” Mater. Sci. Eng. A, 734, 506 – 512 (2018).CrossRef
25.
go back to reference A. V. Makarov, I. Yu. Malygina, S. V. Burov, and R. A. Savrai, “RF Patent 2643289, Method for ultrasonic strengthening treatment for components,” Byull. Izobr. Polezn. Modeli, No. 4 (2018) A. V. Makarov, I. Yu. Malygina, S. V. Burov, and R. A. Savrai, “RF Patent 2643289, Method for ultrasonic strengthening treatment for components,” Byull. Izobr. Polezn. Modeli, No. 4 (2018)
26.
go back to reference A. V. Makarov, R. A. Savrai, I. Y. Malygina, et al., “Nanostructuring and surface hardening of structural steels by ultrasonic impact-frictional treatment,” AIP Conf. Proc., 2053(020006), 105 (2018). A. V. Makarov, R. A. Savrai, I. Y. Malygina, et al., “Nanostructuring and surface hardening of structural steels by ultrasonic impact-frictional treatment,” AIP Conf. Proc., 2053(020006), 105 (2018).
27.
go back to reference R. A. Savrai and A. V. Makarov, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part II: Mechanical properties,” Mater. Sci. Eng. A, 734, 513 – 518 (2018).CrossRef R. A. Savrai and A. V. Makarov, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part II: Mechanical properties,” Mater. Sci. Eng. A, 734, 513 – 518 (2018).CrossRef
28.
go back to reference S. K. Ganapathi and D. A. Rigney, “An HREM study of the nanocrystalline material produced by sliding wear processes,” Scr. Metall., 24(9), 1675 – 1677 (1990).CrossRef S. K. Ganapathi and D. A. Rigney, “An HREM study of the nanocrystalline material produced by sliding wear processes,” Scr. Metall., 24(9), 1675 – 1677 (1990).CrossRef
29.
go back to reference L. G. Korshunov, V. A. Shabashov, N. L. Chernenko, and V. P. Pilyugin, “Effect of stressed state of friction contact areas on deformation of the structure of a surface layer and tribological properties of steels and alloys,” Fiz. Metal. Metalloved., 105(1), 70 – 85 (2008). L. G. Korshunov, V. A. Shabashov, N. L. Chernenko, and V. P. Pilyugin, “Effect of stressed state of friction contact areas on deformation of the structure of a surface layer and tribological properties of steels and alloys,” Fiz. Metal. Metalloved., 105(1), 70 – 85 (2008).
30.
go back to reference A. V. Makarov, R. A. Savrai, N. A. Pozdejeva, et al., “Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension,” Surf. Coat. Technol., 205(3), 841 – 852 (2010).CrossRef A. V. Makarov, R. A. Savrai, N. A. Pozdejeva, et al., “Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension,” Surf. Coat. Technol., 205(3), 841 – 852 (2010).CrossRef
31.
go back to reference D. I. Vichuzhanin, A. V. Makarov, S. V. Smirnov, et al., “Stress strained state and damage during friction strengthening treatment of a flat steel surface by sliding a cylindrical indenter,” Probl. Mashinostr. Nadezh. Mashin, No. 6, 61 – 69 (2011). D. I. Vichuzhanin, A. V. Makarov, S. V. Smirnov, et al., “Stress strained state and damage during friction strengthening treatment of a flat steel surface by sliding a cylindrical indenter,” Probl. Mashinostr. Nadezh. Mashin, No. 6, 61 – 69 (2011).
32.
go back to reference V. P. Kuznetsov, I. Yu. Smolin, A. N. Dmitriev, et al., “Finiteelement modeling of nano-structuring smoothing,” Fiz. Mezomekh., 14(6), 87 – 97 (2011). V. P. Kuznetsov, I. Yu. Smolin, A. N. Dmitriev, et al., “Finiteelement modeling of nano-structuring smoothing,” Fiz. Mezomekh., 14(6), 87 – 97 (2011).
33.
go back to reference J. G. Li, M. Umemoto, Y. Todaka, and K. Tsuchiya, “Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation,” J. Alloys and Compounds, 434 – 435, 290 – 293 (2007). J. G. Li, M. Umemoto, Y. Todaka, and K. Tsuchiya, “Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation,” J. Alloys and Compounds, 434 – 435, 290 – 293 (2007).
34.
go back to reference V. Panin, A. Kolubaev, S. Tarasov, and V. Popov, “Subsurface layer formation during sliding friction” Wear, 249, No. 10 – 11, 860 – 867 (2002). V. Panin, A. Kolubaev, S. Tarasov, and V. Popov, “Subsurface layer formation during sliding friction” Wear, 249, No. 10 – 11, 860 – 867 (2002).
35.
go back to reference A. I. Rudskoi, A. A. Bogatov, D. Sh. Nukhov, and A. O. Talkushkin, “New method of intense plastic deformation of metals,” Metalloved. Term. Obrab. Met., No. 1, 5 – 8 (2018). A. I. Rudskoi, A. A. Bogatov, D. Sh. Nukhov, and A. O. Talkushkin, “New method of intense plastic deformation of metals,” Metalloved. Term. Obrab. Met., No. 1, 5 – 8 (2018).
36.
go back to reference L. G. Korshunov, A. V. Makarov, V. M. Schastlivtsev, et al., “Structure ad wear resistance of steel U8 treated with a laser,” Fiz. Metal. Metalloved., 66(5), 948 – 957 (1988). L. G. Korshunov, A. V. Makarov, V. M. Schastlivtsev, et al., “Structure ad wear resistance of steel U8 treated with a laser,” Fiz. Metal. Metalloved., 66(5), 948 – 957 (1988).
37.
go back to reference L. G. Korshunov, A. V. Makarov, and N. L. Chernenko, “Structural aspects of wear resistance of martensitic class steels,” Fiz. Metal. Metalloved., 78(4), 128 – 146 (1994). L. G. Korshunov, A. V. Makarov, and N. L. Chernenko, “Structural aspects of wear resistance of martensitic class steels,” Fiz. Metal. Metalloved., 78(4), 128 – 146 (1994).
38.
go back to reference A. V. Makarov, R. A. Savrai, É. S. Gorkunov, et al., “Structure, mechanical properties, features of deformation and failure during static and cyclic loading of hardened structural steel subjected to combined deformation-thermal nano-structuring treatment,” Fiz. Mezomekhan., 17(1), 5 – 20 (2014) A. V. Makarov, R. A. Savrai, É. S. Gorkunov, et al., “Structure, mechanical properties, features of deformation and failure during static and cyclic loading of hardened structural steel subjected to combined deformation-thermal nano-structuring treatment,” Fiz. Mezomekhan., 17(1), 5 – 20 (2014)
Metadata
Title
Development of Methods for Steel Surface Deformation Nanostructuring
Authors
A. V. Makarov
R. A. Savrai
P. A. Skorynina
E. G. Volkova
Publication date
22-06-2020
Publisher
Springer US
Published in
Metal Science and Heat Treatment / Issue 1-2/2020
Print ISSN: 0026-0673
Electronic ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-020-00513-4

Other articles of this Issue 1-2/2020

Metal Science and Heat Treatment 1-2/2020 Go to the issue

Premium Partners