Skip to main content
Top

2020 | OriginalPaper | Chapter

Developments in Metallic Biomaterials and Surface Coatings for Various Biomedical Applications

Authors : Gurmohan Singh, Abhineet Saini

Published in: Advances in Materials Processing

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metallic materials serve a great deal in biomedical applications due to specific desired properties mimicking to human anatomy in terms of hard tissues. Of these materials titanium-based alloys are the most preferred materials in orthopaedics and dentistry due to resemblance in mechanical behaviour of these materials to human bones and dentistry. But, these materials lack in certain characteristic properties, which makes them unable to be bioactive in nature. For this, metallic biomaterials are treated to inculcate various functional properties in them. Most common of these techniques is by surface coating using bioactive materials like hydroxyapatite (HAp). Alone HAp as well as HAp-based composite coatings find significant application in improving biomedical properties of metallic materials. This paper provides an in-depth review of various developments in applications of various conventional as well as newer metallic biomaterials and discusses techniques to improve properties of these biomaterials for number of biomedical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Saini, M., Singh, Y., Arora, P., Arora, V., Jain, K.: Implant biomaterials: a comprehensive review. World J. Clin Case. WJCC 3(1), 52–57 (2015) Saini, M., Singh, Y., Arora, P., Arora, V., Jain, K.: Implant biomaterials: a comprehensive review. World J. Clin Case. WJCC 3(1), 52–57 (2015)
2.
go back to reference Hanawa, T.: In vivo metallic biomaterials and surface modification. Mater. Sci. Eng. A. 267(2), 260–266 (1999) Hanawa, T.: In vivo metallic biomaterials and surface modification. Mater. Sci. Eng. A. 267(2), 260–266 (1999)
3.
go back to reference Breme, H., Biehl, V., Reger, N., Gawalt, E.: A metallic biomaterials: Introduction. In Handbook of Biomaterial Properties, pp. 151–158. Springer, New York, NY (2016) Breme, H., Biehl, V., Reger, N., Gawalt, E.: A metallic biomaterials: Introduction. In Handbook of Biomaterial Properties, pp. 151–158. Springer, New York, NY (2016)
4.
go back to reference Navarro, M., Michiardi, A., Castano, O., Planell, J.A.: Biomaterials in orthopaedics. J. R. Soc. Interface 5(27), 1137–1158 (2008) Navarro, M., Michiardi, A., Castano, O., Planell, J.A.: Biomaterials in orthopaedics. J. R. Soc. Interface 5(27), 1137–1158 (2008)
5.
go back to reference Baino, F., Potestio, I.: Orbital implants: state-of-the-art review with emphasis on biomaterials and recent advances. Mater. Sci. Eng. C 69, 1410–1428 (2016) Baino, F., Potestio, I.: Orbital implants: state-of-the-art review with emphasis on biomaterials and recent advances. Mater. Sci. Eng. C 69, 1410–1428 (2016)
6.
go back to reference Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 243(1–2), 231–236 (1998) Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 243(1–2), 231–236 (1998)
7.
go back to reference Manam, N.S., Harun, W.S.W., Shri, D.N.A., Ghani, S.A.C., Kurniawan, T., Ismail, M.H., Ibrahim, M.H.I.: Study of corrosion in biocompatible metals for implants: a review. J. Alloy. Compd. 701, 698–715 (2017) Manam, N.S., Harun, W.S.W., Shri, D.N.A., Ghani, S.A.C., Kurniawan, T., Ismail, M.H., Ibrahim, M.H.I.: Study of corrosion in biocompatible metals for implants: a review. J. Alloy. Compd. 701, 698–715 (2017)
8.
go back to reference Kuroda, P.A.B., Buzalaf, M.A.R., Grandini, C.R.: Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys. Mater. Sci. Eng. C. 67, 511–515 (2016) Kuroda, P.A.B., Buzalaf, M.A.R., Grandini, C.R.: Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys. Mater. Sci. Eng. C. 67, 511–515 (2016)
9.
go back to reference Michael, F.M., Khalid, M., Walvekar, R., Ratnam, C.T., Ramarad, S., Siddiqui, H., Hoque, M.E.: Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater. Sci. Eng. C. 67, 792–806 (2016) Michael, F.M., Khalid, M., Walvekar, R., Ratnam, C.T., Ramarad, S., Siddiqui, H., Hoque, M.E.: Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater. Sci. Eng. C. 67, 792–806 (2016)
10.
go back to reference Manivasagam, G., Dhinasekaran, D., Rajamanickam, A.: Biomedical implants: corrosion and its prevention-a review. Recent Pat. Corro. Sci. 2, 40–54 (2010) Manivasagam, G., Dhinasekaran, D., Rajamanickam, A.: Biomedical implants: corrosion and its prevention-a review. Recent Pat. Corro. Sci. 2, 40–54 (2010)
11.
go back to reference Chen, Q., Thouas, G.A.: Metallic implant biomaterials. Mater. Sci. Eng. R. Rep. 87, 1–57 (2015) Chen, Q., Thouas, G.A.: Metallic implant biomaterials. Mater. Sci. Eng. R. Rep. 87, 1–57 (2015)
12.
go back to reference Tang, T.T., Qin, L.: Translational study of orthopaedic biomaterials and devices. J. Orthop. Trans. 5, 69–71 (2016) Tang, T.T., Qin, L.: Translational study of orthopaedic biomaterials and devices. J. Orthop. Trans. 5, 69–71 (2016)
13.
go back to reference Wang, K.K., Wang, A., Gustavson, LJ.: Metal-on-metal wear testing of Co-Cr alloys. In Cobalt-base alloys for biomedical applications. ASTM International, 135–144 (1999) Wang, K.K., Wang, A., Gustavson, LJ.: Metal-on-metal wear testing of Co-Cr alloys. In Cobalt-base alloys for biomedical applications. ASTM International, 135–144 (1999)
14.
go back to reference Niinomi, M.: Recent metallic materials for biomedical applications. Metall. Mater. Trans. A. 33(3), 477–486 (2002) Niinomi, M.: Recent metallic materials for biomedical applications. Metall. Mater. Trans. A. 33(3), 477–486 (2002)
15.
go back to reference Harun, W.S.W., Asri, R.I.M., Alias, J., Zulkifli, F.H., Kadirgama, K., Ghani, S.A.C., Shariffuddin, J.H.M.: A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram. Int. 44(2), 1250–1268 (2018) Harun, W.S.W., Asri, R.I.M., Alias, J., Zulkifli, F.H., Kadirgama, K., Ghani, S.A.C., Shariffuddin, J.H.M.: A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram. Int. 44(2), 1250–1268 (2018)
16.
go back to reference Yamamuro, T.: Patterns of osteogenesis in relation to various biomaterials. J. Jpn. Soc. Biomater. 7, 19–23 (1989) Yamamuro, T.: Patterns of osteogenesis in relation to various biomaterials. J. Jpn. Soc. Biomater. 7, 19–23 (1989)
17.
go back to reference Saini, A., Pabla, B.S., Dhami, S.S.: Developments in cutting tool technology in improving machinability of Ti6Al4V alloy: a review. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(11), 1977–1989 (2016) Saini, A., Pabla, B.S., Dhami, S.S.: Developments in cutting tool technology in improving machinability of Ti6Al4V alloy: a review. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(11), 1977–1989 (2016)
18.
go back to reference Froes, F.H.: How to market titanium: lower the cost. JOM 56(2), 39 (2004) Froes, F.H.: How to market titanium: lower the cost. JOM 56(2), 39 (2004)
19.
go back to reference Niinomi, M., Nakai, M., Hieda, J.: Development of new metallic alloys for biomedical applications. Actabiomaterialia 8(11), 3888–3903 (2012) Niinomi, M., Nakai, M., Hieda, J.: Development of new metallic alloys for biomedical applications. Actabiomaterialia 8(11), 3888–3903 (2012)
20.
go back to reference Niinomi, M., Boehlert, C.J.: Titanium alloys for biomedical applications. In Advances in Metallic Biomaterials, pp. 179–213. Springer, Berlin, Heidelberg (2015) Niinomi, M., Boehlert, C.J.: Titanium alloys for biomedical applications. In Advances in Metallic Biomaterials, pp. 179–213. Springer, Berlin, Heidelberg (2015)
21.
go back to reference Veiga, C., Davim, J.P., Loureiro, A.J.R.: Properties and applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci. 32(2), 133–148 (2012) Veiga, C., Davim, J.P., Loureiro, A.J.R.: Properties and applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci. 32(2), 133–148 (2012)
22.
go back to reference Olding, T., Sayer, M., Barrow, D.: Ceramic sol–gel composite coatings for electrical insulation. Thin Solid Films 398, 581–586 (2001) Olding, T., Sayer, M., Barrow, D.: Ceramic sol–gel composite coatings for electrical insulation. Thin Solid Films 398, 581–586 (2001)
23.
go back to reference Dorozhkin, S.V.: Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Actabiomaterialia 10(7), 2919–2934 (2014) Dorozhkin, S.V.: Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Actabiomaterialia 10(7), 2919–2934 (2014)
24.
go back to reference Liu, J.X., Yang, D.Z., Shi, F., Cai, Y.J.: Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films 429(1–2), 225–230 (2003) Liu, J.X., Yang, D.Z., Shi, F., Cai, Y.J.: Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films 429(1–2), 225–230 (2003)
25.
go back to reference Kohn, D.H.: Metals in medical applications. Curr. Opin. Solid State Mater. Sci. 3(3), 309–316 (1998) Kohn, D.H.: Metals in medical applications. Curr. Opin. Solid State Mater. Sci. 3(3), 309–316 (1998)
26.
go back to reference Dinu, M., Franchi, S., Pruna, V., Cotrut, C.M., Secchi, V., Santi, M., Vladescu, A.: Ti-Nb-Zr system and its surface biofunctionalization for biomedical applications. In Titanium in Medical and Dental Applications, pp. 175–200. Woodhead Publishing (2018) Dinu, M., Franchi, S., Pruna, V., Cotrut, C.M., Secchi, V., Santi, M., Vladescu, A.: Ti-Nb-Zr system and its surface biofunctionalization for biomedical applications. In Titanium in Medical and Dental Applications, pp. 175–200. Woodhead Publishing (2018)
27.
go back to reference Niinomi, M.: Titanium alloys with high biological and mechanical biocompatibility. In Biomaterials in Asia: In Commemoration of the 1st Asian Biomaterials Congress, Tsukuba, Japan, pp. 269–290. World Scientific (2008) Niinomi, M.: Titanium alloys with high biological and mechanical biocompatibility. In Biomaterials in Asia: In Commemoration of the 1st Asian Biomaterials Congress, Tsukuba, Japan, pp. 269–290. World Scientific (2008)
28.
go back to reference Zhao, X., Niinomi, M., Nakai, M., Ishimoto, T., Nakano, T.: Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants. Mater. Sci. Eng. C. 31(7), 1436–1444 (2011) Zhao, X., Niinomi, M., Nakai, M., Ishimoto, T., Nakano, T.: Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants. Mater. Sci. Eng. C. 31(7), 1436–1444 (2011)
29.
go back to reference Rao, S., Ushida, T., Tateishi, T., Okazaki, Y., Asao, S.: Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-Med. Mater. Eng. 6(2), 79–86 (1996) Rao, S., Ushida, T., Tateishi, T., Okazaki, Y., Asao, S.: Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-Med. Mater. Eng. 6(2), 79–86 (1996)
30.
go back to reference Perl, D.P., Moalem, S.: Aluminum and Alzheimer’s disease, a personal perspective after 25 years. J. Alzheimers Dis. 9(s3), 291–300 (2006) Perl, D.P., Moalem, S.: Aluminum and Alzheimer’s disease, a personal perspective after 25 years. J. Alzheimers Dis. 9(s3), 291–300 (2006)
31.
go back to reference Kannan, M.B.: Hydroxyapatite coating on biodegradable magnesium and magnesium-based allcccdoys. In Hydroxyapatite (HAp) for Biomedical Applications (pp. 289–306). Woodhead Publishing (2015) Kannan, M.B.: Hydroxyapatite coating on biodegradable magnesium and magnesium-based allcccdoys. In Hydroxyapatite (HAp) for Biomedical Applications (pp. 289–306). Woodhead Publishing (2015)
32.
go back to reference Xiao, M., Chen, Y.M., Biao, M.N., Zhang, X.D., Yang, B.C.: Bio-functionalization of biomedical metals. Mater. Sci. Eng. C. 70, 1057–1070 (2017) Xiao, M., Chen, Y.M., Biao, M.N., Zhang, X.D., Yang, B.C.: Bio-functionalization of biomedical metals. Mater. Sci. Eng. C. 70, 1057–1070 (2017)
33.
go back to reference Hadidi, M., Bigham, A., Saebnoori, E., Hassanzadeh-Tabrizi, S.A., Rahmati, S., Alizadeh, Z.M., Rafienia, M.: Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf. Coat. Technol. 321, 171–179 (2017) Hadidi, M., Bigham, A., Saebnoori, E., Hassanzadeh-Tabrizi, S.A., Rahmati, S., Alizadeh, Z.M., Rafienia, M.: Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf. Coat. Technol. 321, 171–179 (2017)
34.
go back to reference Harun, W.S.W., Asri, R.I.M., Sulong, A.B., Ghani, S.A.C., Ghazalli, Z.: Hydroxyapatite-based coating on biomedical implant. Hydroxyapatite: Advances in Composite Nanomaterials, Biomedical Applications and its Technological Facets, pp. 69–88 (2018) Harun, W.S.W., Asri, R.I.M., Sulong, A.B., Ghani, S.A.C., Ghazalli, Z.: Hydroxyapatite-based coating on biomedical implant. Hydroxyapatite: Advances in Composite Nanomaterials, Biomedical Applications and its Technological Facets, pp. 69–88 (2018)
35.
go back to reference Groot, K.D., Geesink, R., Klein, C.P.A.T., Serekian, P.: Plasma sprayed coatings of hydroxyapatite. J. Biomed. Mater. Res. 21(12), 1375–1381 (1987) Groot, K.D., Geesink, R., Klein, C.P.A.T., Serekian, P.: Plasma sprayed coatings of hydroxyapatite. J. Biomed. Mater. Res. 21(12), 1375–1381 (1987)
36.
go back to reference Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A.: Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J. Biome. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 58(5), 570–592 (2001) Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A.: Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J. Biome. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 58(5), 570–592 (2001)
37.
go back to reference Khor, K.A., Yip, C.S., Cheang, P.: Post-spray hot isostatic pressing of plasma sprayed Ti-6Al-4 V/hydroxyapatite composite coatings. J. Mater. Process. Technol. 71(2), 280–287 (1997) Khor, K.A., Yip, C.S., Cheang, P.: Post-spray hot isostatic pressing of plasma sprayed Ti-6Al-4 V/hydroxyapatite composite coatings. J. Mater. Process. Technol. 71(2), 280–287 (1997)
38.
go back to reference Yang, Y., Dennison, D., Ong, J.L.: Protein adsorption and osteoblast precursor cell attachment to hydroxyapatite of different crystallinities. Int. J. Oral Maxillofacial Implants, 20(2) (2005) Yang, Y., Dennison, D., Ong, J.L.: Protein adsorption and osteoblast precursor cell attachment to hydroxyapatite of different crystallinities. Int. J. Oral Maxillofacial Implants, 20(2) (2005)
39.
go back to reference Cheang, P., Khor, K.A.: Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials 17(5), 537–544 (1996) Cheang, P., Khor, K.A.: Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials 17(5), 537–544 (1996)
40.
go back to reference Hanyaloglu, C., Aksakal, B., Bolton, J.D.: Production and indentation analysis of WC/Fe–Mn as an alternative to cobalt-bonded hardmetals. Mater. Charact. 47(3–4), 315–322 (2001) Hanyaloglu, C., Aksakal, B., Bolton, J.D.: Production and indentation analysis of WC/Fe–Mn as an alternative to cobalt-bonded hardmetals. Mater. Charact. 47(3–4), 315–322 (2001)
41.
go back to reference Mohseni, E., Zalnezhad, E., Bushroa, A.R.: Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4 V implant: a review paper. Int. J. Adhes. Adhes. 48, 238–257 (2014) Mohseni, E., Zalnezhad, E., Bushroa, A.R.: Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4 V implant: a review paper. Int. J. Adhes. Adhes. 48, 238–257 (2014)
42.
go back to reference Cheung, J.T.: History and fundamentals of pulsed laser deposition Pulsed Laser Deposition of Thin Films ed DB Chrisey and G Hubler (1994) Cheung, J.T.: History and fundamentals of pulsed laser deposition Pulsed Laser Deposition of Thin Films ed DB Chrisey and G Hubler (1994)
43.
go back to reference Zhitomirsky, I., Gal-Or, L.: Electrophoretic deposition of hydroxyapatite. J. Mater. Sci. Mater. Med. 8(4), 213–219 (1997) Zhitomirsky, I., Gal-Or, L.: Electrophoretic deposition of hydroxyapatite. J. Mater. Sci. Mater. Med. 8(4), 213–219 (1997)
44.
go back to reference Liu, D.M., Yang, Q., Troczynski, T.: Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 23(3), 691–698 (2002) Liu, D.M., Yang, Q., Troczynski, T.: Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 23(3), 691–698 (2002)
45.
go back to reference Piveteau, L.D., Gasser, B., Schlapbach, L.: Evaluating mechanical adhesion of sol–gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials 21(21), 2193–2201 (2000) Piveteau, L.D., Gasser, B., Schlapbach, L.: Evaluating mechanical adhesion of sol–gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials 21(21), 2193–2201 (2000)
46.
go back to reference Packham, D.E.: The mechanical theory of adhesion. Handbook of Adhesive Technology, 69–93 (2003) Packham, D.E.: The mechanical theory of adhesion. Handbook of Adhesive Technology, 69–93 (2003)
47.
go back to reference Surmenev, R.A.: A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surf. Coat. Technol. 206(8–9), 2035–2056 (2012) Surmenev, R.A.: A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surf. Coat. Technol. 206(8–9), 2035–2056 (2012)
48.
go back to reference Artzi, N., Zeiger, A., Boehning, F., bon Ramos, A., Van Vliet, K., Edelman, E.R.: Tuning adhesion failure strength for tissue-specific applications. Actabiomaterialia, 7(1), 67–74 (2011) Artzi, N., Zeiger, A., Boehning, F., bon Ramos, A., Van Vliet, K., Edelman, E.R.: Tuning adhesion failure strength for tissue-specific applications. Actabiomaterialia, 7(1), 67–74 (2011)
49.
go back to reference Packham, D.E.: Surface energy, surface topography and adhesion. Int. J. Adhes. Adhes. 23(6), 437–448 (2003) Packham, D.E.: Surface energy, surface topography and adhesion. Int. J. Adhes. Adhes. 23(6), 437–448 (2003)
50.
go back to reference Surmenev, R.A., Surmeneva, M.A., Ivanova, A.A.: Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis–a review. Actabiomaterialia 10(2), 557–579 (2014) Surmenev, R.A., Surmeneva, M.A., Ivanova, A.A.: Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis–a review. Actabiomaterialia 10(2), 557–579 (2014)
51.
go back to reference Kiran, A., Kumar, T.S., Sanghavi, R., Doble, M., Ramakrishna, S.: Antibacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings. Nanomaterials 8(10), 860 (2018) Kiran, A., Kumar, T.S., Sanghavi, R., Doble, M., Ramakrishna, S.: Antibacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings. Nanomaterials 8(10), 860 (2018)
52.
go back to reference Wronska, M.A., O’Connor, I.B., Tilbury, M.A., Srivastava, A., Wall, J.G.: Adding functions to biomaterial surfaces through protein incorporation. Adv. Mater. 28(27), 5485–5508 (2016) Wronska, M.A., O’Connor, I.B., Tilbury, M.A., Srivastava, A., Wall, J.G.: Adding functions to biomaterial surfaces through protein incorporation. Adv. Mater. 28(27), 5485–5508 (2016)
53.
go back to reference Kelly, M., Williams, R., Aojula, A., O’Neill, J., Trzińscka, Z., Grover, L., de Cogan, F.: Peptide aptamers: Novel coatings for orthopaedic implants. Mater. Sci. Eng. C. 54, 84–93 (2015) Kelly, M., Williams, R., Aojula, A., O’Neill, J., Trzińscka, Z., Grover, L., de Cogan, F.: Peptide aptamers: Novel coatings for orthopaedic implants. Mater. Sci. Eng. C. 54, 84–93 (2015)
54.
go back to reference Baino, F., Verné, E.: Glass-based coatings on biomedical implants: A state-of-the-art review. Biomed. Glass. 3(1), 1–17 (2017) Baino, F., Verné, E.: Glass-based coatings on biomedical implants: A state-of-the-art review. Biomed. Glass. 3(1), 1–17 (2017)
55.
go back to reference Bilsel, Y., Abci, I.: The search for ideal hernia repairs; mesh materials and types. Int. J. Surg. 10(6), 317–321 (2012) Bilsel, Y., Abci, I.: The search for ideal hernia repairs; mesh materials and types. Int. J. Surg. 10(6), 317–321 (2012)
56.
go back to reference Barabás, R., Katona, G., Bogya, E.S., Diudea, M.V., Szentes, A., Zsirka, B., Czikó, M.: Preparation and characterization of carboxyl functionalized multiwall carbon nanotubes–hydroxyapatite composites. Ceram. Int. 41(10), 12717–12727 (2015) Barabás, R., Katona, G., Bogya, E.S., Diudea, M.V., Szentes, A., Zsirka, B., Czikó, M.: Preparation and characterization of carboxyl functionalized multiwall carbon nanotubes–hydroxyapatite composites. Ceram. Int. 41(10), 12717–12727 (2015)
57.
go back to reference Kanhed, S., Awasthi, S., Goel, S., Pandey, A., Sharma, R., Upadhyaya, A., Balani, K.: Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites. Ceram. Int. 43(13), 10442–10449 (2017) Kanhed, S., Awasthi, S., Goel, S., Pandey, A., Sharma, R., Upadhyaya, A., Balani, K.: Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites. Ceram. Int. 43(13), 10442–10449 (2017)
58.
go back to reference Mukherjee, S., Kundu, B., Chanda, A., Sen, S.: Effect of functionalisation of CNT in the preparation of HAp–CNT biocomposites. Ceram. Int. 41(3), 3766–3774 (2015) Mukherjee, S., Kundu, B., Chanda, A., Sen, S.: Effect of functionalisation of CNT in the preparation of HAp–CNT biocomposites. Ceram. Int. 41(3), 3766–3774 (2015)
59.
go back to reference Huang, Y., Han, S., Pang, X., Ding, Q., Yan, Y.: Electro deposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl. Surf. Sci. 271, 299–302 (2013) Huang, Y., Han, S., Pang, X., Ding, Q., Yan, Y.: Electro deposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl. Surf. Sci. 271, 299–302 (2013)
60.
go back to reference Czechowska, J., Zima, A., Siek, D., Ślósarczyk, A.: The importance of chitosan and nano-TiHA in cement-type composites on the basis of calcium sulfate. Ceram. Int. 42(14), 15559–15567 (2016) Czechowska, J., Zima, A., Siek, D., Ślósarczyk, A.: The importance of chitosan and nano-TiHA in cement-type composites on the basis of calcium sulfate. Ceram. Int. 42(14), 15559–15567 (2016)
61.
go back to reference Kezhi, L., Qian, G., Leilei, Z., Yulei, Z., Shoujie, L., Kebing, G., Shaoxian, L.: Synthesis and characterization of Si-substituted hydroxyapatite bioactive coating for SiC-coated carbon/carbon composites. Ceram. Int. 43(1), 1410–1414 (2017) Kezhi, L., Qian, G., Leilei, Z., Yulei, Z., Shoujie, L., Kebing, G., Shaoxian, L.: Synthesis and characterization of Si-substituted hydroxyapatite bioactive coating for SiC-coated carbon/carbon composites. Ceram. Int. 43(1), 1410–1414 (2017)
62.
go back to reference Family, R., Solati-Hashjin, M., Nik, S.N., Nemati, A.: Surface modification for titanium implants by hydroxyapatite nanocomposite. Caspian J. Intern. Med. 3(3), 460 (2012) Family, R., Solati-Hashjin, M., Nik, S.N., Nemati, A.: Surface modification for titanium implants by hydroxyapatite nanocomposite. Caspian J. Intern. Med. 3(3), 460 (2012)
63.
go back to reference Mobasherpour, I., Hashjin, M.S., Toosi, S.R., Kamachali, R.D.: Effect of the addition ZrO2–Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness. Ceram. Int. 35(4), 1569–1574 (2009) Mobasherpour, I., Hashjin, M.S., Toosi, S.R., Kamachali, R.D.: Effect of the addition ZrO2–Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness. Ceram. Int. 35(4), 1569–1574 (2009)
Metadata
Title
Developments in Metallic Biomaterials and Surface Coatings for Various Biomedical Applications
Authors
Gurmohan Singh
Abhineet Saini
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4748-5_20

Premium Partners