Skip to main content
Top
Published in: Journal of Electronic Materials 9/2023

25-06-2023 | Brief Communication

Dielectric and Electrochemical Sensing Studies of Li Co-doped LaAlO3:Ce3+Nanopowders

Authors: S. Pratibha, Yashaswini, K. Hareesh, S. R. Manohara, H. J. Yashwanth, C. R. Manjunatha

Published in: Journal of Electronic Materials | Issue 9/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report the structural, morphological, dielectric, and electrochemical sensing studies of Li co-doped LaAlO3:Ce3+1.5 nanopowders successfully synthesized via a simple combustion technique utilizing sugar as fuel. Powder x-ray diffraction analysis confirmed that the prepared nanopowders have a pure rhombohedral crystal structure. The average particle size of the prepared nanopowders was found using Scherrer’s relationship and the W-H method and was found to be in the range of 40–60 nm. Fourier-transform infrared spectra revealed the strong transmittance peaks at 455 cm−1, 668 cm−1, 832 cm−1, 1044 cm−1, 1389 cm−1, 1592 cm−1, 2432 cm−1, and 3441 cm−1. The formation of nanoparticles was evidenced by scanning electron micrographs. The optical band gap of the prepared nanopowders was estimated. The dielectric and electrical features of the prepared nanopowders were carried out in the frequency range from 10 Hz to 8 MHz at RT utilizing an LCR meter. The prepared nanopowders showed high dielectric constant and low dielectric loss in low- and high-frequency regions, respectively. Using a Cole–Cole plot, the grain boundary contributions in the prepared nanopowders have been explained. Using cyclic voltammetry and chronoamperometry, the electrochemical sensing performance of the Li+ co-doped Ce3+ activated LaAlO3nanostructure was investigated. This demonstrated improved sensing behavior due to the intermediate energy levels formed by the additional dopant, Ce3+ and co-dopant, Li+. The introduction of Li+ ions into the LaAlO3:Ce3+ nanostructures improves the performance of these materials in various applications. The novelty of dielectric and electrochemical sensing studies of Li co-doped LaAlO3:Ce3+1.5 nanopowders indicate an approach to investigate the electrical properties of a new material which finds potential applications in electrochemical sensing devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Kaur, D. Singh, V. Dubey, N.S. Suryanarayana, Y. Parganiha, and P. Jha, Review of the synthesis, characterization, and properties of LaAlO3 phosphors. Res. Chem. Intermed. 40, 2737 (2014).CrossRef J. Kaur, D. Singh, V. Dubey, N.S. Suryanarayana, Y. Parganiha, and P. Jha, Review of the synthesis, characterization, and properties of LaAlO3 phosphors. Res. Chem. Intermed. 40, 2737 (2014).CrossRef
2.
go back to reference S.Y. Cho, I.T. Kim, and K.S. Hong, Microwave dielectric properties and applications of rare-earth aluminates. J. Mater. Res 14, 114 (1999).CrossRef S.Y. Cho, I.T. Kim, and K.S. Hong, Microwave dielectric properties and applications of rare-earth aluminates. J. Mater. Res 14, 114 (1999).CrossRef
3.
go back to reference B. Jancar, D. Suvorov, M. Valant, and G. Drazic, Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 91391 (2003).CrossRef B. Jancar, D. Suvorov, M. Valant, and G. Drazic, Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 91391 (2003).CrossRef
4.
go back to reference I. Zvereva, V. Yu Smirnov, V. Gusarov, and J.C. Popova, Complex aluminates RE2SrAl2O7 (RE= La, Nd, Sm–Ho): cation ordering and stability of the double perovskite slab–rocksalt layer P2/RS intergrowth. Solid State Sci. 5, 343 (2003).CrossRef I. Zvereva, V. Yu Smirnov, V. Gusarov, and J.C. Popova, Complex aluminates RE2SrAl2O7 (RE= La, Nd, Sm–Ho): cation ordering and stability of the double perovskite slab–rocksalt layer P2/RS intergrowth. Solid State Sci. 5, 343 (2003).CrossRef
5.
go back to reference C.-S. Hsu, C.-L. Huang, and K.-H. Chiang, Microwave dielectric properties of B2O3 doped LaAlO3 ceramics at low sintering temperature. J. Mater. Sci. 38, 3495 (2003).CrossRef C.-S. Hsu, C.-L. Huang, and K.-H. Chiang, Microwave dielectric properties of B2O3 doped LaAlO3 ceramics at low sintering temperature. J. Mater. Sci. 38, 3495 (2003).CrossRef
6.
go back to reference S. Pratibha, N. Dhananjaya, and S.R. Manohara, LS Reddy Yadav, Effect of Sm3+, Bi3+ ion doping on the photoluminescence and dielectric properties of phytosynthesized LaAlO3 nanoparticles. J. Mater. Sci Mater Electron. 30, 6745 (2019).CrossRef S. Pratibha, N. Dhananjaya, and S.R. Manohara, LS Reddy Yadav, Effect of Sm3+, Bi3+ ion doping on the photoluminescence and dielectric properties of phytosynthesized LaAlO3 nanoparticles. J. Mater. Sci Mater Electron. 30, 6745 (2019).CrossRef
7.
go back to reference M.T. Sebastian, Dielectric materials for wireless communication (Amsterdam: Elsevier, 2010). M.T. Sebastian, Dielectric materials for wireless communication (Amsterdam: Elsevier, 2010).
8.
go back to reference R. Venkatesh, S. Pratibha, N. Dhananjaya, S.R. Manohara, and G. Nagaraju, Study of optical and dielectric properties of alkali metal cation (Li+, Na+, K+) codoped Eu3+ activated gadolinium aluminate nanoparticles. Mater. Res. Express. 6, 095008 (2019).CrossRef R. Venkatesh, S. Pratibha, N. Dhananjaya, S.R. Manohara, and G. Nagaraju, Study of optical and dielectric properties of alkali metal cation (Li+, Na+, K+) codoped Eu3+ activated gadolinium aluminate nanoparticles. Mater. Res. Express. 6, 095008 (2019).CrossRef
9.
go back to reference S. Pratibha and N. Dhananjaya, Apsar Pasha, Syed Khasim, Improved luminescence and LPG sensing properties of Sm3+-doped lanthanum aluminate thin films. Appl. Nanosci. 10, 1927 (2020).CrossRef S. Pratibha and N. Dhananjaya, Apsar Pasha, Syed Khasim, Improved luminescence and LPG sensing properties of Sm3+-doped lanthanum aluminate thin films. Appl. Nanosci. 10, 1927 (2020).CrossRef
10.
go back to reference R. Lokesh, S. Pratibha, N. Dhananjaya, S.R. Manohara, and K.H. Sudheer Kumar, Reformed solution combustion approach for probing of structural and dielectric properties of Sm3+ doped GdAlO3 nanoparticles. Mater. Res. Express. 6, 105066 (2019).CrossRef R. Lokesh, S. Pratibha, N. Dhananjaya, S.R. Manohara, and K.H. Sudheer Kumar, Reformed solution combustion approach for probing of structural and dielectric properties of Sm3+ doped GdAlO3 nanoparticles. Mater. Res. Express. 6, 105066 (2019).CrossRef
11.
go back to reference L. Dong, X. Yan, K. Cheng, W. Weng, and W. Han, Low-temperature reduction–pyrolysis–catalysis synthesis of carbon nanospheres for lithium-ion batteries. RSC Adv. 5, 55474 (2015).CrossRef L. Dong, X. Yan, K. Cheng, W. Weng, and W. Han, Low-temperature reduction–pyrolysis–catalysis synthesis of carbon nanospheres for lithium-ion batteries. RSC Adv. 5, 55474 (2015).CrossRef
13.
go back to reference G.F. Sun, X.W. Qi, T. Zhang, X.Y. Zhang, and H. Chen, Preparation and characterization of Bi-doped LaAlO3 via sol-gel process. Adv. Mater. Res. 624, 30 (2013).CrossRef G.F. Sun, X.W. Qi, T. Zhang, X.Y. Zhang, and H. Chen, Preparation and characterization of Bi-doped LaAlO3 via sol-gel process. Adv. Mater. Res. 624, 30 (2013).CrossRef
14.
go back to reference C.B. Lux, R.D. Clark, A. Salazar, L.K. Sveum, and M.A. Krebs, Aerosol generation of lanthanum aluminate. J. Am. Ceram. Soc. 76, 2669 (1993).CrossRef C.B. Lux, R.D. Clark, A. Salazar, L.K. Sveum, and M.A. Krebs, Aerosol generation of lanthanum aluminate. J. Am. Ceram. Soc. 76, 2669 (1993).CrossRef
15.
go back to reference M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobatesand coating method using the same to form a capacitor, U.S. Patent 3,330,697, issued July 11, (1967). M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobatesand coating method using the same to form a capacitor, U.S. Patent 3,330,697, issued July 11, (1967).
16.
go back to reference S. Pratibha, N. Dhananjaya, C.R. Manjunatha, and A. Narayana, Fast adsorptive removal of direct blue-53 dye on rare-earth doped Lanthanum aluminate nanoparticles: equilibrium and kinetic studies. Mater. Res. Express. 6, 1250i5 (2020).CrossRef S. Pratibha, N. Dhananjaya, C.R. Manjunatha, and A. Narayana, Fast adsorptive removal of direct blue-53 dye on rare-earth doped Lanthanum aluminate nanoparticles: equilibrium and kinetic studies. Mater. Res. Express. 6, 1250i5 (2020).CrossRef
17.
go back to reference G. Qin, X. Huang, J. Chen, and Z. He, Synthesis of Sr and Mg double-doped LaAlO3 nanopowders via EDTA-glycine combined process. Powder Technol. 235, 880 (2013).CrossRef G. Qin, X. Huang, J. Chen, and Z. He, Synthesis of Sr and Mg double-doped LaAlO3 nanopowders via EDTA-glycine combined process. Powder Technol. 235, 880 (2013).CrossRef
19.
go back to reference S. Yashaswini, C. Pratibha, and G. Pandurangappa, Nagaraju, Enhanced photoluminescence and decay studies of Li co-doped LaAlO3: Ce3+ phosphor for display applications. Eur. Phys. J. Plus. 137, 1 (2022).CrossRef S. Yashaswini, C. Pratibha, and G. Pandurangappa, Nagaraju, Enhanced photoluminescence and decay studies of Li co-doped LaAlO3: Ce3+ phosphor for display applications. Eur. Phys. J. Plus. 137, 1 (2022).CrossRef
20.
go back to reference B.D. Cullity, Elements of X-ray Diffraction (Boston: Addison-Wesley Publishing, 1956). B.D. Cullity, Elements of X-ray Diffraction (Boston: Addison-Wesley Publishing, 1956).
21.
go back to reference G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Actametallurgica 1, 22 (1953). G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Actametallurgica 1, 22 (1953).
22.
go back to reference S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, and V. Jagadeesh Angadi, Enhanced humidity sensing performance of Samarium doped Lanthanum Aluminate at room temperature. Sens. Actuator A Phys. 304, 111903 (2020).CrossRef S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, and V. Jagadeesh Angadi, Enhanced humidity sensing performance of Samarium doped Lanthanum Aluminate at room temperature. Sens. Actuator A Phys. 304, 111903 (2020).CrossRef
24.
go back to reference S. Yashaswini, R. Pratibha, N. Lokesh, and C. Dhananjaya, Pandurangappa, Disaccharide assisted LaAlO3: Ce3+perovskite: structural and optical studies suitable for display devices. Inorg. Chem. Commun. 123, 108342 (2021).CrossRef S. Yashaswini, R. Pratibha, N. Lokesh, and C. Dhananjaya, Pandurangappa, Disaccharide assisted LaAlO3: Ce3+perovskite: structural and optical studies suitable for display devices. Inorg. Chem. Commun. 123, 108342 (2021).CrossRef
25.
go back to reference K. Mondal and J. Manam, Enhancement of photoluminescence in Eu3+ co-activated Ca2MgSi2O7: Dy3+ phosphors for solid state lighting application. J. Mol. Struct. 1125, 503 (2016).CrossRef K. Mondal and J. Manam, Enhancement of photoluminescence in Eu3+ co-activated Ca2MgSi2O7: Dy3+ phosphors for solid state lighting application. J. Mol. Struct. 1125, 503 (2016).CrossRef
26.
go back to reference M.K. Fayek, S.S. Ata-Allah, H.A. Zayed, M. Kaiser, and S.M. Ismail, Effect of Zn substitution on relaxation characteristics and dielectric properties of Cu1−xZnxGa0.5Fe1.5O4 spinel. J. Alloys Compd. 469, 9 (2009).CrossRef M.K. Fayek, S.S. Ata-Allah, H.A. Zayed, M. Kaiser, and S.M. Ismail, Effect of Zn substitution on relaxation characteristics and dielectric properties of Cu1−xZnxGa0.5Fe1.5O4 spinel. J. Alloys Compd. 469, 9 (2009).CrossRef
27.
go back to reference S.K. Saji, T. Jeyasingh, R. Vinodkumar, and P.R.S. Wariar, Radhakrishnan, Temperature dependent electrical properties of combustion synthesized GdAlO3perovskite. In AIP Conf. Proc. 1859, 020015 (2017).CrossRef S.K. Saji, T. Jeyasingh, R. Vinodkumar, and P.R.S. Wariar, Radhakrishnan, Temperature dependent electrical properties of combustion synthesized GdAlO3perovskite. In AIP Conf. Proc. 1859, 020015 (2017).CrossRef
28.
go back to reference G. Dixit, J.P. Singh, R.C. Srivastava, and H.M. Agrawal, Study of 200 MeV Ag15+ ion induced amorphisation in nickel ferrite thin films. Nucl. Inst. Methods Phys. Res. B Nucl. Inst. Methods B 269, 133 (2011).CrossRef G. Dixit, J.P. Singh, R.C. Srivastava, and H.M. Agrawal, Study of 200 MeV Ag15+ ion induced amorphisation in nickel ferrite thin films. Nucl. Inst. Methods Phys. Res. B Nucl. Inst. Methods B 269, 133 (2011).CrossRef
29.
go back to reference S.C. Watawe, B.D. Sarwade, S.S. Bellad, B.D. Sutar, and B.K. Chougule, Microstructure, frequency and temperature-dependent dielectric properties of cobalt-substituted lithium ferrites. J. Magn. Magn. Mater. 214, 55 (2000).CrossRef S.C. Watawe, B.D. Sarwade, S.S. Bellad, B.D. Sutar, and B.K. Chougule, Microstructure, frequency and temperature-dependent dielectric properties of cobalt-substituted lithium ferrites. J. Magn. Magn. Mater. 214, 55 (2000).CrossRef
30.
go back to reference C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951).CrossRef C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951).CrossRef
31.
go back to reference W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to ceramics (New Jersey: Wiley, 1976). W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to ceramics (New Jersey: Wiley, 1976).
32.
go back to reference U.N. Trivedi, M.C. Chhantbar, K.B. Modi, and H.H. Joshi, Frequency dependent dielectric behaviour of cadmium and chromium co-substituted nickel ferrite. Indian J. Pure Appl. Phys. 43, 688 (2005). U.N. Trivedi, M.C. Chhantbar, K.B. Modi, and H.H. Joshi, Frequency dependent dielectric behaviour of cadmium and chromium co-substituted nickel ferrite. Indian J. Pure Appl. Phys. 43, 688 (2005).
33.
go back to reference A.M. Abdeen, O.M. Hemeda, E.E. Assem, and M.M. El-Sehly, Structural, electrical and transport phenomena of Co ferrite substituted by Cd. J. Magn. Magn. Mater. 238, 75 (2002).CrossRef A.M. Abdeen, O.M. Hemeda, E.E. Assem, and M.M. El-Sehly, Structural, electrical and transport phenomena of Co ferrite substituted by Cd. J. Magn. Magn. Mater. 238, 75 (2002).CrossRef
34.
go back to reference A. Azam, Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles. J. Alloy. Compd. 540, 145–153 (2012).CrossRef A. Azam, Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles. J. Alloy. Compd. 540, 145–153 (2012).CrossRef
35.
go back to reference K. Verma, A. Kumar, and D. Varshney, Dielectric relaxation behavior of AxCo1−xFe2O4 (A= Zn, Mg) mixed ferrites. J. Alloys Compd. 526, 91 (2012).CrossRef K. Verma, A. Kumar, and D. Varshney, Dielectric relaxation behavior of AxCo1−xFe2O4 (A= Zn, Mg) mixed ferrites. J. Alloys Compd. 526, 91 (2012).CrossRef
36.
go back to reference M.S. Samuel, J. Koshy, A. Chandran, and K.C. George, Dielectric behavior and transport properties of ZnO nanorods. Phys. B Condens. Matter. 406, 3023 (2011).CrossRef M.S. Samuel, J. Koshy, A. Chandran, and K.C. George, Dielectric behavior and transport properties of ZnO nanorods. Phys. B Condens. Matter. 406, 3023 (2011).CrossRef
37.
go back to reference S.A. Ansari, A. Nisar, W.K. BusharaFatma, and A.H. Naqvi, Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Mater. Sci. Eng. B 177, 428 (2012).CrossRef S.A. Ansari, A. Nisar, W.K. BusharaFatma, and A.H. Naqvi, Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Mater. Sci. Eng. B 177, 428 (2012).CrossRef
38.
go back to reference N. Sivakumar, A. Narayanasamy, N. Ponpandian, and G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5 Zn0.5 Fe2 O4. J. Appl. Phys. 101, 084116 (2007).CrossRef N. Sivakumar, A. Narayanasamy, N. Ponpandian, and G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5 Zn0.5 Fe2 O4. J. Appl. Phys. 101, 084116 (2007).CrossRef
39.
go back to reference B. Ramesh, S. Ramesh, R. Vijaya Kumar, and M. Lakshmipathi Rao, AC impedance studies on LiFe5−xMnxO8 ferrites. J. Alloys Compd. 513, 289 (2012).CrossRef B. Ramesh, S. Ramesh, R. Vijaya Kumar, and M. Lakshmipathi Rao, AC impedance studies on LiFe5−xMnxO8 ferrites. J. Alloys Compd. 513, 289 (2012).CrossRef
40.
go back to reference Y. Marouani, J. Massoudi, M. Noumi, A. Benali, E. Dhahri, P. Sanguino, M.P.F. Graça, M.A. Valente, and B.F.O. Costa, Electrical conductivity and dielectric properties of Sr doped M-type barium hexaferrite BaFe12O19. RSC adv. 11, 1531 (2021).CrossRef Y. Marouani, J. Massoudi, M. Noumi, A. Benali, E. Dhahri, P. Sanguino, M.P.F. Graça, M.A. Valente, and B.F.O. Costa, Electrical conductivity and dielectric properties of Sr doped M-type barium hexaferrite BaFe12O19. RSC adv. 11, 1531 (2021).CrossRef
41.
go back to reference L. Vasylechko, A. Senyshyn, and U. Bismayer, Perovskite-type aluminates and gallates. Handb. Phys. Chem. Rare Earths 39, 113 (2009).CrossRef L. Vasylechko, A. Senyshyn, and U. Bismayer, Perovskite-type aluminates and gallates. Handb. Phys. Chem. Rare Earths 39, 113 (2009).CrossRef
42.
go back to reference B. Jancar, D. Suvorov, M. Valant, and G. Drazic, Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 1391 (2003).CrossRef B. Jancar, D. Suvorov, M. Valant, and G. Drazic, Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 1391 (2003).CrossRef
43.
go back to reference M. Hashim, B.H. Shalendra Kumar, S.E. Koo, E.M. Shirsath, J.S. Mohammed, R.K. Kotnala, H.K. Choi, H. Chung, and R. Kumar, Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloys Compd. 518, 11 (2012).CrossRef M. Hashim, B.H. Shalendra Kumar, S.E. Koo, E.M. Shirsath, J.S. Mohammed, R.K. Kotnala, H.K. Choi, H. Chung, and R. Kumar, Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloys Compd. 518, 11 (2012).CrossRef
45.
go back to reference K.H. Sudheer Kumar, Yashaswini, H.J. Yashwanth, S. Pratibha, K. Hareesh, and S.R. Manohara, EntadaGigas seeds mediated synthesis of carbon for dielectric and sensing applications. Sens. Int. 3, 100162 (2022).CrossRef K.H. Sudheer Kumar, Yashaswini, H.J. Yashwanth, S. Pratibha, K. Hareesh, and S.R. Manohara, EntadaGigas seeds mediated synthesis of carbon for dielectric and sensing applications. Sens. Int. 3, 100162 (2022).CrossRef
46.
go back to reference C.R. Manjunatha, B.M. Nagabhushana, M.S. Raghu, S. Pratibha, N. Dhananjaya, and A. Narayana, Perovskite lanthanum aluminate nanoparticles applications in antimicrobial activity, adsorptive removal of Direct Blue 53 dye and fluoride. Mater. Sci. Eng. C. 101, 674 (2019).CrossRef C.R. Manjunatha, B.M. Nagabhushana, M.S. Raghu, S. Pratibha, N. Dhananjaya, and A. Narayana, Perovskite lanthanum aluminate nanoparticles applications in antimicrobial activity, adsorptive removal of Direct Blue 53 dye and fluoride. Mater. Sci. Eng. C. 101, 674 (2019).CrossRef
47.
go back to reference S. Pratibha, N. Dhananjaya, and G.N. Yashaswini, LaAlO3: Dy3+perovskite for white light emitting phosphors suitable for display devices. J. Mater. Sci. Mater. Electron. 33, 4400 (2022).CrossRef S. Pratibha, N. Dhananjaya, and G.N. Yashaswini, LaAlO3: Dy3+perovskite for white light emitting phosphors suitable for display devices. J. Mater. Sci. Mater. Electron. 33, 4400 (2022).CrossRef
48.
go back to reference C. Yashaswini and S. Pandurangappa, Pratibha, Impact of alkali metal cation (Li+) on luminescence behavior of CaSO4: Ce3+ nanophosphors. Inorg. Chem. Commun. 125, 108466 (2021).CrossRef C. Yashaswini and S. Pandurangappa, Pratibha, Impact of alkali metal cation (Li+) on luminescence behavior of CaSO4: Ce3+ nanophosphors. Inorg. Chem. Commun. 125, 108466 (2021).CrossRef
Metadata
Title
Dielectric and Electrochemical Sensing Studies of Li Co-doped LaAlO3:Ce3+Nanopowders
Authors
S. Pratibha
Yashaswini
K. Hareesh
S. R. Manohara
H. J. Yashwanth
C. R. Manjunatha
Publication date
25-06-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10529-0

Other articles of this Issue 9/2023

Journal of Electronic Materials 9/2023 Go to the issue