Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2024

01-03-2024

Dielectric, ferroelectric, piezoelectric properties, and conduction behavior of (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics

Authors: Yanzi Qiu, Zide Yu, XianKun Wang, Xiaoshuang Qiao

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electrical properties and conduction behavior of (Bi0.5Na0.5)0.94+xBa0.06TiO3 (x = 0, 0.01; denoted as BNBT, BNBT + 0.01BN) ceramics were studied. Both samples demonstrated a single-phase perovskite structure. Compared to the BNBT sample, the BNBT + 0.01BN sample showed a reduction in grain size and decreased values for Curie temperature (Tm) and depolarization temperature (Td). Normalized spectroscopic plots of M"/M"max and Z"/Z"max revealed a single relaxation peak. The complex impedance plots were modeled using an equivalent circuit, and the grain resistance (Rg) decreases with increasing temperature. At 500 °C, the Rg values for BNBT and BNBT + 0.01BN samples were 339.97 and 886.98 kΩ × cm, respectively. Jonscher’s law was applied to fit the AC conductivity, and the obtained n values indicated different conduction mechanisms for the two samples. Additionally, the conduction activation energy (Econ) for DC conductivity followed the Arrhenius relation. Introducing a small (Bi,Na) excess suppresses oxygen and cation vacancies, significantly increasing resistivity. Consequently, the BNBT + 0.01BN sample exhibited excellent remanent polarization (Pr) of 34.2 μC/cm2 and piezoelectric constant (d33) of 135 pC/N.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)CrossRef T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)CrossRef
2.
go back to reference J. Rodel, K.G. Webber, R. Dittmer, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRef J. Rodel, K.G. Webber, R. Dittmer, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRef
3.
go back to reference M. Waqar, H. Wu, J. Chen, K. Yao, J. Wang, Evolution from lead-based to lead-free piezoelectrics: engineering of lattices, domains, boundaries, and defects leading to giant response. Adv. Mater. 34, 2106845 (2022)CrossRef M. Waqar, H. Wu, J. Chen, K. Yao, J. Wang, Evolution from lead-based to lead-free piezoelectrics: engineering of lattices, domains, boundaries, and defects leading to giant response. Adv. Mater. 34, 2106845 (2022)CrossRef
4.
go back to reference X. Zhou, G. Xue, H. Luo, C.R. Bowen, D. Zhang, Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog. Mater. Sci. 122, 100836 (2021)CrossRef X. Zhou, G. Xue, H. Luo, C.R. Bowen, D. Zhang, Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog. Mater. Sci. 122, 100836 (2021)CrossRef
5.
go back to reference T. Takenaka, K.I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991)CrossRef T. Takenaka, K.I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991)CrossRef
6.
go back to reference W.J. Cao, R.J. Lin, X. Hou, L. Li, F. Li, D. Bo, C. Wang, Interfacial polarization restriction for ultrahigh energy-storage density in lead-free ceramics. Adv. Funct. Mater. 35, 2301027 (2023)CrossRef W.J. Cao, R.J. Lin, X. Hou, L. Li, F. Li, D. Bo, C. Wang, Interfacial polarization restriction for ultrahigh energy-storage density in lead-free ceramics. Adv. Funct. Mater. 35, 2301027 (2023)CrossRef
7.
go back to reference H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, Z.G. Ye, A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C. 8, 16648–16667 (2020)CrossRef H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, Z.G. Ye, A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C. 8, 16648–16667 (2020)CrossRef
8.
go back to reference P. Mao, Y. Guo, G. Lu, Q. Yan, R. Kang, T. Wang, L. Zhang, Synergistic effect of multi-phase and multi-domain structures induced high energy storage performances under low electric fields in Na0.5Bi0.5TiO3-based lead-free ceramics. Chem. Eng. J. 472, 144973 (2023)CrossRef P. Mao, Y. Guo, G. Lu, Q. Yan, R. Kang, T. Wang, L. Zhang, Synergistic effect of multi-phase and multi-domain structures induced high energy storage performances under low electric fields in Na0.5Bi0.5TiO3-based lead-free ceramics. Chem. Eng. J. 472, 144973 (2023)CrossRef
9.
go back to reference W. Zhu, H. Guo, Z.Y. Shen, F. Song, W. Luo, Z. Wang, Y. Li, Boosting dielectric temperature stability in BNBST-based energy storage ceramics by Nb2O5 modification. J. Am. Ceram. Soc. 106, 3633–3642 (2023)CrossRef W. Zhu, H. Guo, Z.Y. Shen, F. Song, W. Luo, Z. Wang, Y. Li, Boosting dielectric temperature stability in BNBST-based energy storage ceramics by Nb2O5 modification. J. Am. Ceram. Soc. 106, 3633–3642 (2023)CrossRef
10.
go back to reference M. Acosta, J. Zang, W. Jo, J. Rödel, High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J. Eur. Ceram. Soc. 32, 4327–4334 (2012)CrossRef M. Acosta, J. Zang, W. Jo, J. Rödel, High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J. Eur. Ceram. Soc. 32, 4327–4334 (2012)CrossRef
11.
go back to reference J.G. Hao, W. Li, J.W. Zhai, H. Chen, Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R. Rep. 135, 1–57 (2019)CrossRef J.G. Hao, W. Li, J.W. Zhai, H. Chen, Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R. Rep. 135, 1–57 (2019)CrossRef
12.
go back to reference X. Wu, L. Wen, C. Wu, X. Lv, J. Yin, J. Wu, Insight into the large electro-strain in bismuth sodium titanate-based relaxor ferroelectrics: From fundamentals to regulation methods. Mater. Sci. Technol. 150, 27–48 (2023)CrossRef X. Wu, L. Wen, C. Wu, X. Lv, J. Yin, J. Wu, Insight into the large electro-strain in bismuth sodium titanate-based relaxor ferroelectrics: From fundamentals to regulation methods. Mater. Sci. Technol. 150, 27–48 (2023)CrossRef
13.
go back to reference X.S. Qiao, X.M. Chen, H.L. Lian, W.T. Chen, J.P. Zhou, P. Liu, Microstructure and electrical properties of nonstoichiometric 0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 lead-free ceramics. J. Am. Ceram. Soc. 99, 198–205 (2016)CrossRef X.S. Qiao, X.M. Chen, H.L. Lian, W.T. Chen, J.P. Zhou, P. Liu, Microstructure and electrical properties of nonstoichiometric 0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 lead-free ceramics. J. Am. Ceram. Soc. 99, 198–205 (2016)CrossRef
14.
go back to reference Y. Hiruma, H. Nagata, T. Takenaka, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112 (2009)CrossRef Y. Hiruma, H. Nagata, T. Takenaka, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112 (2009)CrossRef
15.
go back to reference F. Yang, M. Li, L. Li, P. Wu, E. Pradal-Velázquez, D.C. Sinclair, Defect chemistry and electrical properties of sodium bismuth titanate perovskite. J. Mater. Chem. A 6, 5243–5254 (2018)CrossRef F. Yang, M. Li, L. Li, P. Wu, E. Pradal-Velázquez, D.C. Sinclair, Defect chemistry and electrical properties of sodium bismuth titanate perovskite. J. Mater. Chem. A 6, 5243–5254 (2018)CrossRef
16.
go back to reference I.T. Seo, S. Steiner, T. Frömling, The effect of A site non-stoichiometry on 0.94(NayBix)TiO3–0.06BaTiO3. J. Eur. Ceram. Soc. 37, 1429–1436 (2017)CrossRef I.T. Seo, S. Steiner, T. Frömling, The effect of A site non-stoichiometry on 0.94(NayBix)TiO3–0.06BaTiO3. J. Eur. Ceram. Soc. 37, 1429–1436 (2017)CrossRef
17.
go back to reference Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, S.S. Kim, Effects of Na nonstoichiometry in (Bi0.5Na0.5+x)TiO3 ceramics. Appl. Phys. Lett. 96, 022901 (2010)CrossRef Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, S.S. Kim, Effects of Na nonstoichiometry in (Bi0.5Na0.5+x)TiO3 ceramics. Appl. Phys. Lett. 96, 022901 (2010)CrossRef
18.
go back to reference M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, D.C. Sinclair, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31–35 (2014)PubMedCrossRef M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, D.C. Sinclair, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31–35 (2014)PubMedCrossRef
19.
go back to reference X. Li, Q. Jing, Z. Xi, P. Liu, W. Long, P. Fang, Dielectric relaxation and electrical conduction in (BixNa1-x)0.94Ba0.06TiO3 ceramics. J. Am. Ceram. Soc. 101, 789–799 (2018)CrossRef X. Li, Q. Jing, Z. Xi, P. Liu, W. Long, P. Fang, Dielectric relaxation and electrical conduction in (BixNa1-x)0.94Ba0.06TiO3 ceramics. J. Am. Ceram. Soc. 101, 789–799 (2018)CrossRef
20.
go back to reference X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J. Eur. Ceram. Soc. 36, 3995–4001 (2016)CrossRef X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J. Eur. Ceram. Soc. 36, 3995–4001 (2016)CrossRef
21.
22.
go back to reference M. Li, H. Zhang, S.N. Cook, L. Li, J.A. Kilner, I.M. Reaney, D.C. Sinclair, Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem. Mater. 27, 629–634 (2015)CrossRef M. Li, H. Zhang, S.N. Cook, L. Li, J.A. Kilner, I.M. Reaney, D.C. Sinclair, Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem. Mater. 27, 629–634 (2015)CrossRef
23.
go back to reference A.M. Zhang, R.Y. Jing, M. Zhuang, H. Hou, L. Zhang, J. Zhang, L. Jin, Nonstoichiometric effect of A-site complex ions on structural, dielectric, ferroelectric, and electrostrain properties of bismuth sodium titanate ceramics. Ceram. Int. 47, 32747–32755 (2021)CrossRef A.M. Zhang, R.Y. Jing, M. Zhuang, H. Hou, L. Zhang, J. Zhang, L. Jin, Nonstoichiometric effect of A-site complex ions on structural, dielectric, ferroelectric, and electrostrain properties of bismuth sodium titanate ceramics. Ceram. Int. 47, 32747–32755 (2021)CrossRef
24.
go back to reference E.M. Anton, W. Jo, D. Damjanovic, J. Rodel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 110, 094108 (2011)CrossRef E.M. Anton, W. Jo, D. Damjanovic, J. Rodel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 110, 094108 (2011)CrossRef
25.
go back to reference M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, Structure and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 843–849 (2008)CrossRef M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, Structure and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 843–849 (2008)CrossRef
26.
go back to reference K. Uchino, E. Sadanaga, T. Hirose, Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555–1558 (1989)CrossRef K. Uchino, E. Sadanaga, T. Hirose, Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555–1558 (1989)CrossRef
27.
go back to reference J.G. Fisher, D. Rout, K.S. Moon, S.J.L., Kang, High-temperature X-ray diffraction and Raman spectroscopy study of (K0.5Na0.5)NbO3 ceramics sintered in oxidizing and reducing atmospheres. Mater. Chem. Phys. 120, 263–271 (2010)CrossRef J.G. Fisher, D. Rout, K.S. Moon, S.J.L., Kang, High-temperature X-ray diffraction and Raman spectroscopy study of (K0.5Na0.5)NbO3 ceramics sintered in oxidizing and reducing atmospheres. Mater. Chem. Phys. 120, 263–271 (2010)CrossRef
28.
go back to reference Z.H. Liu, H. Wu, Y. Yuan, H.Y. Wan, Z. Luo, P. Gao, Z.G. Ye, Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications. Curr. Opin. Solid State Mater. Sci. 26, 101016 (2022)CrossRef Z.H. Liu, H. Wu, Y. Yuan, H.Y. Wan, Z. Luo, P. Gao, Z.G. Ye, Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications. Curr. Opin. Solid State Mater. Sci. 26, 101016 (2022)CrossRef
29.
go back to reference L. Soonil, C.A. Rall, Z.K. Liu, Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate. J. Am. Ceram. Soc. 90, 2589–2594 (2007)CrossRef L. Soonil, C.A. Rall, Z.K. Liu, Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate. J. Am. Ceram. Soc. 90, 2589–2594 (2007)CrossRef
30.
go back to reference Q. Xu, D.P. Huang, M. Chen, W. Chen, H.X. Liu, B.H. Kim, Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3-BaTiO3 composition near the morphotropic phase boundary. J. Alloys Compd. 471, 310 (2009)CrossRef Q. Xu, D.P. Huang, M. Chen, W. Chen, H.X. Liu, B.H. Kim, Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3-BaTiO3 composition near the morphotropic phase boundary. J. Alloys Compd. 471, 310 (2009)CrossRef
31.
go back to reference Y. Guo, M. Gu, H. Luo, Y. Liu, R.L. Withers, Composition-induced antiferroelectric phase and giant strain in lead-free (Nay, Biz)Ti1-xO3(1–x)-xBaTiO3 ceramics. Phys. Rev. B 83, 054118 (2011)CrossRef Y. Guo, M. Gu, H. Luo, Y. Liu, R.L. Withers, Composition-induced antiferroelectric phase and giant strain in lead-free (Nay, Biz)Ti1-xO3(1x)-xBaTiO3 ceramics. Phys. Rev. B 83, 054118 (2011)CrossRef
32.
go back to reference X. Liu, R. Rao, J. Shi, J. He, Y. Zhao, J. Liu, H. Du, Effect of oxygen vacancy and A-site-deficiency on the dielectric performance of BNT-BT-BST relaxors. J. Alloys Compd. 875, 159999 (2021)CrossRef X. Liu, R. Rao, J. Shi, J. He, Y. Zhao, J. Liu, H. Du, Effect of oxygen vacancy and A-site-deficiency on the dielectric performance of BNT-BT-BST relaxors. J. Alloys Compd. 875, 159999 (2021)CrossRef
33.
go back to reference Y.Z. Qiu, X.M. Chen, H.L. Lian, J.P. Ma, W.Q. Ouyang, Structure and electrical behavior of unpoled and poled 0.97(Bi0.5Na0.5)0.94Ba0.06TiO3–0.03BiAlO3 ceramics. Mater. Chem. Phys. 202, 97–203 (2017)CrossRef Y.Z. Qiu, X.M. Chen, H.L. Lian, J.P. Ma, W.Q. Ouyang, Structure and electrical behavior of unpoled and poled 0.97(Bi0.5Na0.5)0.94Ba0.06TiO3–0.03BiAlO3 ceramics. Mater. Chem. Phys. 202, 97–203 (2017)CrossRef
34.
go back to reference Y.Z. Qiu, Z.D. Yu, Effect of sintering temperature on structure and electrical properties of ZnO-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. J. Mater. Sci: Mater. Electron. 34, 88 (2023) Y.Z. Qiu, Z.D. Yu, Effect of sintering temperature on structure and electrical properties of ZnO-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. J. Mater. Sci: Mater. Electron. 34, 88 (2023)
35.
go back to reference Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Effects of Bi nonstoichiometry in (Bi0.5+xNa0.5) TiO3 ceramics. Appl. Phys. Lett. 98, 1 (2011)CrossRef Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Effects of Bi nonstoichiometry in (Bi0.5+xNa0.5) TiO3 ceramics. Appl. Phys. Lett. 98, 1 (2011)CrossRef
36.
go back to reference K. Wang, J.F. Li, Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater. 20, 1924–1929 (2010)CrossRef K. Wang, J.F. Li, Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater. 20, 1924–1929 (2010)CrossRef
37.
go back to reference E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications (John Wiley, Hoboken, 2018)CrossRef E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications (John Wiley, Hoboken, 2018)CrossRef
38.
go back to reference A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)CrossRef A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)CrossRef
39.
go back to reference S. Prasertpalichat, W. Schmidt, D.P. Cann, Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Adv. Die. 6, 1650012 (2016)CrossRef S. Prasertpalichat, W. Schmidt, D.P. Cann, Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Adv. Die. 6, 1650012 (2016)CrossRef
40.
go back to reference J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)CrossRef J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)CrossRef
41.
go back to reference J. Kolte, A.S. Daryapurkar, D.D. Gulwade, P. Gopalan, Microwave sintered Bi0.90La0.10Fe0.95Mn0.05O3 nanocrystalline ceramics: Impedance and modulus spectroscopy. Ceram. Int. 42, 12914–12921 (2016)CrossRef J. Kolte, A.S. Daryapurkar, D.D. Gulwade, P. Gopalan, Microwave sintered Bi0.90La0.10Fe0.95Mn0.05O3 nanocrystalline ceramics: Impedance and modulus spectroscopy. Ceram. Int. 42, 12914–12921 (2016)CrossRef
42.
go back to reference A.K. Jonscher, The universal dielectric response. Nat. 267, 673–679 (1977)CrossRef A.K. Jonscher, The universal dielectric response. Nat. 267, 673–679 (1977)CrossRef
43.
go back to reference P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, S. Das, Structural and electrical properties of Bi3TiVO9 ferroelectric ceramics. J. Alloys Compd. 731, 1171–1180 (2018)CrossRef P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, S. Das, Structural and electrical properties of Bi3TiVO9 ferroelectric ceramics. J. Alloys Compd. 731, 1171–1180 (2018)CrossRef
44.
go back to reference W. Hizi, H. Rahmouni, K. Khirouni, E. Dhahri, Consistency between theoretical conduction models and experimental conductivity measurements of strontium-doped lanthanum manganite. J. Alloys Compd. 957, 170418 (2023)CrossRef W. Hizi, H. Rahmouni, K. Khirouni, E. Dhahri, Consistency between theoretical conduction models and experimental conductivity measurements of strontium-doped lanthanum manganite. J. Alloys Compd. 957, 170418 (2023)CrossRef
45.
go back to reference S. Nasri, M. Megdiche, M. Gargouri, DC conductivity and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in LiFeP2O7 ceramic. Ceram. Int. 42, 943–951 (2016)CrossRef S. Nasri, M. Megdiche, M. Gargouri, DC conductivity and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in LiFeP2O7 ceramic. Ceram. Int. 42, 943–951 (2016)CrossRef
46.
go back to reference S.R. Elliott, AC conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135 (1987)CrossRef S.R. Elliott, AC conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135 (1987)CrossRef
47.
go back to reference R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701 (2012)CrossRef R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701 (2012)CrossRef
48.
go back to reference A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. Phys. Rev. B 42, 1388 (1990)CrossRef A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. Phys. Rev. B 42, 1388 (1990)CrossRef
49.
go back to reference G. Singh, V.S. Tiwari, P.K. Gupta, Role of oxygen vacancies on relaxation and conduction behavior of KNbO3 ceramic. J. Appl. Phys. 107, 064103 (2010)CrossRef G. Singh, V.S. Tiwari, P.K. Gupta, Role of oxygen vacancies on relaxation and conduction behavior of KNbO3 ceramic. J. Appl. Phys. 107, 064103 (2010)CrossRef
50.
go back to reference Z.D. Yu, X.M. Chen, H.L. Lian, Q. Zhang, W.X. Wu, Microstructure and electrical properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics sintered in low pO2 atmosphere. J. Mater. Sci: Mater. Electron. 29, 19043–19051 (2018) Z.D. Yu, X.M. Chen, H.L. Lian, Q. Zhang, W.X. Wu, Microstructure and electrical properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics sintered in low pO2 atmosphere. J. Mater. Sci: Mater. Electron. 29, 19043–19051 (2018)
51.
go back to reference K.S. Rao, B. Tilak, K.C.V. Rajulu, A. Swathi, H. Workineh, A diffuse phase transition study on Ba2+ substituted (Na0.5Bi0.5)TiO3 ferroelectric ceramic. J. Alloys Compd. 509, 7121–7129 (2011)CrossRef K.S. Rao, B. Tilak, K.C.V. Rajulu, A. Swathi, H. Workineh, A diffuse phase transition study on Ba2+ substituted (Na0.5Bi0.5)TiO3 ferroelectric ceramic. J. Alloys Compd. 509, 7121–7129 (2011)CrossRef
52.
go back to reference S. Dwivedi, M. Badole, H.N. Vasavan, S. Kumar, Influence of annealing environments on the conduction behaviour of KNN-based ceramics. Ceram. Int. 48, 18057–18066 (2022)CrossRef S. Dwivedi, M. Badole, H.N. Vasavan, S. Kumar, Influence of annealing environments on the conduction behaviour of KNN-based ceramics. Ceram. Int. 48, 18057–18066 (2022)CrossRef
53.
go back to reference O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97, 084107 (2005)CrossRef O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97, 084107 (2005)CrossRef
54.
go back to reference B. Guiffard, E. Boucher, L. Eyraud, L. Lebrun, D. Guyomar, Influence of donor co-doping by niobium or fluorine on the conductivity of Mn doped and Mg doped PZT ceramics. J. Eur. Ceram. Soc. 25, 2487–2490 (2005)CrossRef B. Guiffard, E. Boucher, L. Eyraud, L. Lebrun, D. Guyomar, Influence of donor co-doping by niobium or fluorine on the conductivity of Mn doped and Mg doped PZT ceramics. J. Eur. Ceram. Soc. 25, 2487–2490 (2005)CrossRef
55.
go back to reference R. Waser, T. Baiatu, K.H. Hardtl, Dc electrical degradation of perovskite-type titanates: I, ceramics. J. Am. Ceram. Soc. 73, 1645 (1990)CrossRef R. Waser, T. Baiatu, K.H. Hardtl, Dc electrical degradation of perovskite-type titanates: I, ceramics. J. Am. Ceram. Soc. 73, 1645 (1990)CrossRef
56.
go back to reference M.S. Islam, Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J. Mater. Chem. 10, 1027–1038 (2000)CrossRef M.S. Islam, Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J. Mater. Chem. 10, 1027–1038 (2000)CrossRef
57.
go back to reference H. Zhang, A.H. Ramadan, R.A. De Souza, Atomistic simulations of ion migration in sodium bismuth titanate (NBT) materials: towards superior oxide-ion conductors. J. Mater. Chem. A 6, 9116–9123 (2018)CrossRef H. Zhang, A.H. Ramadan, R.A. De Souza, Atomistic simulations of ion migration in sodium bismuth titanate (NBT) materials: towards superior oxide-ion conductors. J. Mater. Chem. A 6, 9116–9123 (2018)CrossRef
Metadata
Title
Dielectric, ferroelectric, piezoelectric properties, and conduction behavior of (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics
Authors
Yanzi Qiu
Zide Yu
XianKun Wang
Xiaoshuang Qiao
Publication date
01-03-2024
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2024
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-12387-w

Other articles of this Issue 9/2024

Journal of Materials Science: Materials in Electronics 9/2024 Go to the issue