Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 21/2018

10-09-2018

Dielectric relaxation and thermally activated a.c. conduction in (PVDF)/(rGO) nano-composites: role of rGO over different fillers

Authors: Mervat Ismail Mohammed, Suzan Salah Fouad, Neeraj Mehta

Published in: Journal of Materials Science: Materials in Electronics | Issue 21/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study describes the fabrication of nano-composites of (PVDF)/(rGO) using solution–cast method. We employed two characterizations for PVDF/rGO nano-composites, Scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, the SEM indicates that the PVDF matrix consists of pores with the presence of globular structures that increases with the increasing rGO concentration, while the FTIR have been used to confirm the interplay between rGO and PVDF matrix. The dielectric measurements of PVDF/rGO nano-composites show a high dielectric constant and low dielectric loss factor. Moreover, frequency and temperature dependent behavior of a.c. conductivity has been carried out in the respective ranges of 102–106 Hz and 303–393 K. Results of a.c. conductivity and the frequency exponent have been found to obey the theory of correlated barrier hopping. Further analysis shows that thermally assisted a.c. conduction shows the compensation effect. The role of rGO over other recent fillers is also summarized by a comparative tabulation of data available in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.S. Novoselo, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef K.S. Novoselo, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
2.
go back to reference D. Chen, H. Feng, J. Li, G. Oxide, Preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRef D. Chen, H. Feng, J. Li, G. Oxide, Preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRef
3.
go back to reference X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)CrossRef X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)CrossRef
4.
go back to reference D. Fan, C. Zhang, J. He, R. Hua, Y. Zhang, Y. Yang, Redox chemistry between graphene oxide and mercaptan. J. Mater. Chem. 22, 18564–18571 (2012)CrossRef D. Fan, C. Zhang, J. He, R. Hua, Y. Zhang, Y. Yang, Redox chemistry between graphene oxide and mercaptan. J. Mater. Chem. 22, 18564–18571 (2012)CrossRef
5.
go back to reference D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRef D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRef
6.
go back to reference H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted grapheme. Adv. Mater. 23, 1089–1115 (2011)CrossRef H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted grapheme. Adv. Mater. 23, 1089–1115 (2011)CrossRef
7.
go back to reference R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 133, 17315–17321 (2011)CrossRef R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 133, 17315–17321 (2011)CrossRef
8.
go back to reference Y. Xu, Q. Wu, Y. Sun, H. Bai, G. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4, 7358–7362 (2010)CrossRef Y. Xu, Q. Wu, Y. Sun, H. Bai, G. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4, 7358–7362 (2010)CrossRef
9.
go back to reference O.O. Ekiz, M. Urel, H. Guner, A.K. Mizrak, A. Dana, Reversible electrical reduction and oxidation of graphene oxide. ACS Nano 5, 2475–2482 (2011)CrossRef O.O. Ekiz, M. Urel, H. Guner, A.K. Mizrak, A. Dana, Reversible electrical reduction and oxidation of graphene oxide. ACS Nano 5, 2475–2482 (2011)CrossRef
10.
go back to reference S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
11.
go back to reference L. Seveyrat, A. Chalkha, D. Guyomar, L. Lebrun, Preparation of graphene nanoflakes/polymer composites and their performances for actuation and energy harvesting applications. J. Appl. Phys. 111, 104904 (2012)CrossRef L. Seveyrat, A. Chalkha, D. Guyomar, L. Lebrun, Preparation of graphene nanoflakes/polymer composites and their performances for actuation and energy harvesting applications. J. Appl. Phys. 111, 104904 (2012)CrossRef
12.
go back to reference Z. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler, Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv. Mater. 24, 3134–3137 (2012)CrossRef Z. Wang, J.K. Nelson, H. Hillborg, S. Zhao, L.S. Schadler, Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv. Mater. 24, 3134–3137 (2012)CrossRef
13.
go back to reference C.-W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater Sci. 37, 1–116 (1993)CrossRef C.-W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater Sci. 37, 1–116 (1993)CrossRef
14.
go back to reference Y. Zhen, J. Arredondo, Z. Guang-Lin, Unusual dielectric loss properties of carbon nanotube—polyvinylidene fluoride composites in low frequency region (100 Hz < f < 1 MHz). Open J. Organic Polym. Mater. 3, 99–103 (2013)CrossRef Y. Zhen, J. Arredondo, Z. Guang-Lin, Unusual dielectric loss properties of carbon nanotube—polyvinylidene fluoride composites in low frequency region (100 Hz < f < 1 MHz). Open J. Organic Polym. Mater. 3, 99–103 (2013)CrossRef
15.
go back to reference D. Wang, Y. Bao, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfcaes 4, 6273–6279 (2012)CrossRef D. Wang, Y. Bao, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfcaes 4, 6273–6279 (2012)CrossRef
16.
go back to reference L. Cui, X. Lu, D. Chao, H. Liu, Y. Li, C. Wang, Graphene-based composite materials with high dielectric permittivity via an in situ reduction method. Phys. Status Solidi (A) 208, 459–461 (2011)CrossRef L. Cui, X. Lu, D. Chao, H. Liu, Y. Li, C. Wang, Graphene-based composite materials with high dielectric permittivity via an in situ reduction method. Phys. Status Solidi (A) 208, 459–461 (2011)CrossRef
17.
go back to reference X.J. Zhang, G.S. Wang, Proceedings of the 16th International Conference on Nanotechnology, Sendai, Japan, 2016, pp. 22–25 X.J. Zhang, G.S. Wang, Proceedings of the 16th International Conference on Nanotechnology, Sendai, Japan, 2016, pp. 22–25
18.
go back to reference P. Fan, L. Wang, J. Yang, F. Chen, M. Zhong, Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23, 365702 (2012)CrossRef P. Fan, L. Wang, J. Yang, F. Chen, M. Zhong, Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23, 365702 (2012)CrossRef
19.
go back to reference T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H.P. Lee, Recent advances in graphene based polymer composites. Polym. Sci. 35, 1350–1375 (2010) T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H.P. Lee, Recent advances in graphene based polymer composites. Polym. Sci. 35, 1350–1375 (2010)
20.
go back to reference H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRef H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRef
21.
go back to reference Z. Xu, C. Gao, In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43, 6716–6723 (2010)CrossRef Z. Xu, C. Gao, In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43, 6716–6723 (2010)CrossRef
22.
go back to reference L. Kan, Z. Xu, C. Gao, General avenue to individually dispersed graphene oxide-based two-dimensional molecular brushes by free radical polymerization. Macromolecules 44, 444–452 (2011)CrossRef L. Kan, Z. Xu, C. Gao, General avenue to individually dispersed graphene oxide-based two-dimensional molecular brushes by free radical polymerization. Macromolecules 44, 444–452 (2011)CrossRef
23.
go back to reference D. Wang, Y. Bao, J.-W. Zhao, Z.-M. Dang, G.-H. Hu, Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfaces 4, 6273–6279 (2012)CrossRef D. Wang, Y. Bao, J.-W. Zhao, Z.-M. Dang, G.-H. Hu, Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfaces 4, 6273–6279 (2012)CrossRef
24.
go back to reference W.K. Chee, H.N. Lim, N.M. Huang, I. Harrison, Nanocomposites of graphene/polymers: a review. RSC Adv. 5, 68014–68051 (2015)CrossRef W.K. Chee, H.N. Lim, N.M. Huang, I. Harrison, Nanocomposites of graphene/polymers: a review. RSC Adv. 5, 68014–68051 (2015)CrossRef
25.
go back to reference A. Qin, X. Li, X. Zhao, D. Liu, C. He, Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl. Mater. Interfaces 7, 8427–8436 (2015)CrossRef A. Qin, X. Li, X. Zhao, D. Liu, C. He, Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl. Mater. Interfaces 7, 8427–8436 (2015)CrossRef
26.
go back to reference T. Wu, B. Zhou, T. Zhu, J. Shi, Z. Xu, C. Hu, J. Wang, Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 5, 7880–7889 (2015)CrossRef T. Wu, B. Zhou, T. Zhu, J. Shi, Z. Xu, C. Hu, J. Wang, Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 5, 7880–7889 (2015)CrossRef
27.
go back to reference C. Zhao, X. Xu, J. Chen, G. Wang, F. Yang, Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 340, 59–66 (2014)CrossRef C. Zhao, X. Xu, J. Chen, G. Wang, F. Yang, Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 340, 59–66 (2014)CrossRef
28.
go back to reference J. Yu, Y. Wang, W. Xiao, Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films Yang. J. Mater. Chem. A 1, 10727–10735 (2013)CrossRef J. Yu, Y. Wang, W. Xiao, Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films Yang. J. Mater. Chem. A 1, 10727–10735 (2013)CrossRef
29.
go back to reference Z.-W. Ouyang, E.-C. Chen, T.-M. Wu, Thermal stability and magnetic properties of polyvinylidene fluoride/magnetite nanocomposites. Materials 8, 4553–4564 (2015)CrossRef Z.-W. Ouyang, E.-C. Chen, T.-M. Wu, Thermal stability and magnetic properties of polyvinylidene fluoride/magnetite nanocomposites. Materials 8, 4553–4564 (2015)CrossRef
30.
go back to reference A.A. Issa, M.A. Al-Maadeed, A.S. Luyt, M. Mrlik, M.K. Hassan, Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano) fibers. J. Appl. Polym. Sci. 133, 43594 (2016)CrossRef A.A. Issa, M.A. Al-Maadeed, A.S. Luyt, M. Mrlik, M.K. Hassan, Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano) fibers. J. Appl. Polym. Sci. 133, 43594 (2016)CrossRef
31.
go back to reference A. Al-Saygh, D. Ponnamma, M. Al., P. Maadeed, P. Vijayan, A. Karim, M.K. Hassan, Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers 9, 33 (2017)CrossRef A. Al-Saygh, D. Ponnamma, M. Al., P. Maadeed, P. Vijayan, A. Karim, M.K. Hassan, Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers 9, 33 (2017)CrossRef
32.
go back to reference P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539–545 (2010)CrossRef P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539–545 (2010)CrossRef
33.
go back to reference W. Zhou, J. Zuo, W. Ren, Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. A 43, 658–664 (2012)CrossRef W. Zhou, J. Zuo, W. Ren, Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. A 43, 658–664 (2012)CrossRef
34.
go back to reference Y. Deng, Y. Zhang, Y. Wang, M. Li, J. Yuan, J. Bai, A facile way to fabricate novel 2–3-type composites based on zinc powders and polyvinylidene fluoride with enhanced dielectric properties. Composites Part A 43, 842–846 (2012)CrossRef Y. Deng, Y. Zhang, Y. Wang, M. Li, J. Yuan, J. Bai, A facile way to fabricate novel 2–3-type composites based on zinc powders and polyvinylidene fluoride with enhanced dielectric properties. Composites Part A 43, 842–846 (2012)CrossRef
35.
go back to reference L. Yang, J.H. Qiu, H.L. Ji, K.J. Zhu, J. Wang, Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites. Composites Part A 65, 125–134 (2014)CrossRef L. Yang, J.H. Qiu, H.L. Ji, K.J. Zhu, J. Wang, Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites. Composites Part A 65, 125–134 (2014)CrossRef
36.
go back to reference J.W. Zha, X. Meng, D. Wang, Z.M. Dang, R.K.Y. Li, Dielectric properties of poly(vinylidene fluoride) nanocomposites filled with surface coated BaTiO3 by SnO2 nanodots. Appl. Phys. Lett. 104, 072906 (2014)CrossRef J.W. Zha, X. Meng, D. Wang, Z.M. Dang, R.K.Y. Li, Dielectric properties of poly(vinylidene fluoride) nanocomposites filled with surface coated BaTiO3 by SnO2 nanodots. Appl. Phys. Lett. 104, 072906 (2014)CrossRef
37.
go back to reference Y. Li, Y. Shi, F. Cai, J. Xue, F. Chen, Q. Fu, Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent. Composites Part A 78, 318–326 (2015)CrossRef Y. Li, Y. Shi, F. Cai, J. Xue, F. Chen, Q. Fu, Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent. Composites Part A 78, 318–326 (2015)CrossRef
38.
go back to reference C. Zhang, Q. Chi, J. Dong, Y. Cui, X. Wang, L. Liu, Q. Lei, Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Sci. Rep. 6, 33508 (2016)CrossRef C. Zhang, Q. Chi, J. Dong, Y. Cui, X. Wang, L. Liu, Q. Lei, Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Sci. Rep. 6, 33508 (2016)CrossRef
39.
go back to reference R. Li, Z. Zhao, Z. Chen, J. Pei, Novel BaTiO3/PVDF composites with enhanced electrical properties modified by calcined BaTiO3 ceramic powders. Mater. Express 7, 536–540 (2017)CrossRef R. Li, Z. Zhao, Z. Chen, J. Pei, Novel BaTiO3/PVDF composites with enhanced electrical properties modified by calcined BaTiO3 ceramic powders. Mater. Express 7, 536–540 (2017)CrossRef
40.
go back to reference Y. Yang, Z. Li, W. Ji, C. Sun, H. Deng, Q. Fu, Enhanced dielectric properties through using mixed fillers consisting of nano-barium titanate/nickel hydroxide for polyvinylidene fluoride based composites. Composites Part A 104, 24–31 (2018)CrossRef Y. Yang, Z. Li, W. Ji, C. Sun, H. Deng, Q. Fu, Enhanced dielectric properties through using mixed fillers consisting of nano-barium titanate/nickel hydroxide for polyvinylidene fluoride based composites. Composites Part A 104, 24–31 (2018)CrossRef
41.
go back to reference F. Li Wang, J. Gao, K. Xu, J. Zhang, M. Kong, H. Reece, Yan, Enhanced dielectric tunability and energy storage properties of platelike (Ba0.6Sr0.4)TiO3/poly(vinylidene fluoride) composites through texture arrangement. Compos. Sci. Technol. 158, 112–120 (2018)CrossRef F. Li Wang, J. Gao, K. Xu, J. Zhang, M. Kong, H. Reece, Yan, Enhanced dielectric tunability and energy storage properties of platelike (Ba0.6Sr0.4)TiO3/poly(vinylidene fluoride) composites through texture arrangement. Compos. Sci. Technol. 158, 112–120 (2018)CrossRef
42.
go back to reference Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.Q. Lei, Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19, 852–857 (2007)CrossRef Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.Q. Lei, Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19, 852–857 (2007)CrossRef
43.
go back to reference F. He, S. Lau, H.L. Chan, J.T. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2009)CrossRef F. He, S. Lau, H.L. Chan, J.T. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2009)CrossRef
44.
go back to reference Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, G.-H. Hu, Fundamentals, processes and applications of high permittivity polymer-matric composites. Prog. Mater. Sci. 57, 660–723 (2012)CrossRef Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, G.-H. Hu, Fundamentals, processes and applications of high permittivity polymer-matric composites. Prog. Mater. Sci. 57, 660–723 (2012)CrossRef
45.
go back to reference H.X. Tang, G.J. Ehlert, Y.R. Lin, H.A. Sodano, Highly efficient synthesis of graphene nanocomposites. Nano Lett. 12, 84–90 (2012)CrossRef H.X. Tang, G.J. Ehlert, Y.R. Lin, H.A. Sodano, Highly efficient synthesis of graphene nanocomposites. Nano Lett. 12, 84–90 (2012)CrossRef
46.
go back to reference X.L. Xu, C.J. Yang, J.H. Yang, T. Huang, Y. Wang, Z.-W. Zhou, Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide. Composites Part B 109, 91–100 (2017)CrossRef X.L. Xu, C.J. Yang, J.H. Yang, T. Huang, Y. Wang, Z.-W. Zhou, Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide. Composites Part B 109, 91–100 (2017)CrossRef
47.
go back to reference I.S. Elashmawi, L.H. Gaabour, Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 5, 105–110 (2015)CrossRef I.S. Elashmawi, L.H. Gaabour, Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 5, 105–110 (2015)CrossRef
48.
go back to reference Z.-M. Dang, T. Zhou, S.-H. Yao, J.-K. Yuan, J.-W. Zha, H.-T. Song, J.-Y. Li, Q. Chen, W.T. Yang, J. Bai, Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21, 2077–2082 (2009)CrossRef Z.-M. Dang, T. Zhou, S.-H. Yao, J.-K. Yuan, J.-W. Zha, H.-T. Song, J.-Y. Li, Q. Chen, W.T. Yang, J. Bai, Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21, 2077–2082 (2009)CrossRef
49.
go back to reference J.-K. Yuan, W.-L. Li, S.-H. Yao, Y.-Q. Lin, A. Sylvestre, J. Bai, High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Appl. Phys. Lett. 98, 032901 (2011)CrossRef J.-K. Yuan, W.-L. Li, S.-H. Yao, Y.-Q. Lin, A. Sylvestre, J. Bai, High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Appl. Phys. Lett. 98, 032901 (2011)CrossRef
50.
go back to reference H. Lu, X. Zhang, H. Zhang, Influence of the relaxation of Maxwell-Wagner-Sillars polarization and dc conductivity on the dielectric behaviors of nylon 1010. J. Appl. Phys. 100, 054104 (2006)CrossRef H. Lu, X. Zhang, H. Zhang, Influence of the relaxation of Maxwell-Wagner-Sillars polarization and dc conductivity on the dielectric behaviors of nylon 1010. J. Appl. Phys. 100, 054104 (2006)CrossRef
51.
go back to reference A. Hassen, T. Hanafy, S. El-Sayed, A. Himanshu, Dielectric relaxation and alternating current conductivity of polyvinylidene fluoride doped with lanthanum chloride. J. Appl. Phys. 110, 114119 (2011)CrossRef A. Hassen, T. Hanafy, S. El-Sayed, A. Himanshu, Dielectric relaxation and alternating current conductivity of polyvinylidene fluoride doped with lanthanum chloride. J. Appl. Phys. 110, 114119 (2011)CrossRef
52.
go back to reference S. El-Sayed, T.A. Abdel-Baset, A. Hassen, Dielectric properties of PVDF thin films doped with 3 wt.% of RCl3 (R = Gd or Er). AIP Adv. 4, 037114 (2014)CrossRef S. El-Sayed, T.A. Abdel-Baset, A. Hassen, Dielectric properties of PVDF thin films doped with 3 wt.% of RCl3 (R = Gd or Er). AIP Adv. 4, 037114 (2014)CrossRef
53.
go back to reference G.A. Samara, F. Baur, The effects of pressure on the β molecular relaxation and phase transitions of the ferroelectric copolymer P(VDF0.7TrFe0.3). Ferroelectrics 135, 385–399 (1992)CrossRef G.A. Samara, F. Baur, The effects of pressure on the β molecular relaxation and phase transitions of the ferroelectric copolymer P(VDF0.7TrFe0.3). Ferroelectrics 135, 385–399 (1992)CrossRef
54.
go back to reference J.Ross Macdonald, Simplified impedance/frequency-response results for intrinsically conducting solids and liquids. J. Chem. Phys. 61, 3977–3996 (1974)CrossRef J.Ross Macdonald, Simplified impedance/frequency-response results for intrinsically conducting solids and liquids. J. Chem. Phys. 61, 3977–3996 (1974)CrossRef
55.
go back to reference A.C. Lopes, C.M. Costa, R.S. Serra, I.C. Neves, J.L.G. Ribelles, S.L. Mendez, Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Sol. Stat. Ionics 235, 42–50 (2013)CrossRef A.C. Lopes, C.M. Costa, R.S. Serra, I.C. Neves, J.L.G. Ribelles, S.L. Mendez, Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Sol. Stat. Ionics 235, 42–50 (2013)CrossRef
56.
go back to reference P. Thomas, S. Satapathy, K. Dwarakanath, K.B. Varma, Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym. Lett. 4, 632–643 (2010)CrossRef P. Thomas, S. Satapathy, K. Dwarakanath, K.B. Varma, Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym. Lett. 4, 632–643 (2010)CrossRef
57.
go back to reference J. Tahalyani, K.K. Rahangdale, K. Balasubramanian, The dielectric properties and charge transport mechanism of π-conjugated segments decorated with intrinsic conducting polymer. RSC Adv. 6, 69733 – 69742 (2016)CrossRef J. Tahalyani, K.K. Rahangdale, K. Balasubramanian, The dielectric properties and charge transport mechanism of π-conjugated segments decorated with intrinsic conducting polymer. RSC Adv. 6, 69733 – 69742 (2016)CrossRef
58.
go back to reference G.C. Psarras, Hopping conductivity in polymer matrix–metal particles composites. Composites Part A 37, 1545–1553 (2006)CrossRef G.C. Psarras, Hopping conductivity in polymer matrix–metal particles composites. Composites Part A 37, 1545–1553 (2006)CrossRef
59.
go back to reference G.N. Tomara, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, Dielectric relaxation mechanisms in polyoxymethylene/polyurethane/layered silicates hybrid nanocomposites. Eur. Polym. J. 95, 304–313 (2017)CrossRef G.N. Tomara, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, Dielectric relaxation mechanisms in polyoxymethylene/polyurethane/layered silicates hybrid nanocomposites. Eur. Polym. J. 95, 304–313 (2017)CrossRef
60.
go back to reference W. Tong, Y. Zhang, L. Yu, X. Luan, Q. An, Q. Zhang, F. Lv, P.K. Chu, B. Shen, Z. Zhang, Novel method for the fabrication of. flexible film with oriented arrays of graphene in poly(vinylidene fluoride-co-hexafluoropropylene) with low dielectric loss. J. Phys. Chem. C 118, 10567–10573 (2014)CrossRef W. Tong, Y. Zhang, L. Yu, X. Luan, Q. An, Q. Zhang, F. Lv, P.K. Chu, B. Shen, Z. Zhang, Novel method for the fabrication of. flexible film with oriented arrays of graphene in poly(vinylidene fluoride-co-hexafluoropropylene) with low dielectric loss. J. Phys. Chem. C 118, 10567–10573 (2014)CrossRef
61.
go back to reference S. Mahrous, Dielectric analysis of the α-relaxation of PVC stabilized with cadmium laurate. Polym. Int. 40, 261–267 (1996)CrossRef S. Mahrous, Dielectric analysis of the α-relaxation of PVC stabilized with cadmium laurate. Polym. Int. 40, 261–267 (1996)CrossRef
62.
go back to reference G.K. Narula, P.K.C. Pillai, Dielectric and TSC study in a semi-compatible solution-mixed PVDF-PMMA blend. J. Mater. Sci. Lett. 8, 608–611 (1989)CrossRef G.K. Narula, P.K.C. Pillai, Dielectric and TSC study in a semi-compatible solution-mixed PVDF-PMMA blend. J. Mater. Sci. Lett. 8, 608–611 (1989)CrossRef
63.
go back to reference V. Rao, P.V. Ashokan, M.H. Shridhar, Studies of dielectric relaxation and a.c conductivity in cellulose acetate hydrogen phthalate-poly(methyl methacrylate) blends. Mater. Sci. Eng. A 281, 213–220 (2000)CrossRef V. Rao, P.V. Ashokan, M.H. Shridhar, Studies of dielectric relaxation and a.c conductivity in cellulose acetate hydrogen phthalate-poly(methyl methacrylate) blends. Mater. Sci. Eng. A 281, 213–220 (2000)CrossRef
64.
go back to reference A.M. El Sayed, Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation. Nucl. Instrum. Methods Phys. Res. B 321, 41–48 (2014)CrossRef A.M. El Sayed, Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation. Nucl. Instrum. Methods Phys. Res. B 321, 41–48 (2014)CrossRef
65.
go back to reference A. Belal, M. Amin, H. Hassan, A. Abd El-Mongy, B. Kamal, K. Ibrahim, The role of BaTiO3 on the dielectric properties of polyvinyl chloride. Phys. Stat. Solidi (A) 144, 53–57 (1994)CrossRef A. Belal, M. Amin, H. Hassan, A. Abd El-Mongy, B. Kamal, K. Ibrahim, The role of BaTiO3 on the dielectric properties of polyvinyl chloride. Phys. Stat. Solidi (A) 144, 53–57 (1994)CrossRef
66.
go back to reference A. Hassen, A.M. El Sayed, W.M. Morsi, S. El-Sayed, Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol. J. Appl. Phys. 112, 093525 (2012)CrossRef A. Hassen, A.M. El Sayed, W.M. Morsi, S. El-Sayed, Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol. J. Appl. Phys. 112, 093525 (2012)CrossRef
67.
go back to reference T.A. Hanafy, Dielectric relaxation and alternating-current conductivity of gadolinium-doped poly(vinyl alcohol). J. Appl. Polym. Sci. 108, 2540–2549 (2008)CrossRef T.A. Hanafy, Dielectric relaxation and alternating-current conductivity of gadolinium-doped poly(vinyl alcohol). J. Appl. Polym. Sci. 108, 2540–2549 (2008)CrossRef
68.
go back to reference H.M. Ragab, Spectroscopic investigations and electrical properties of PVA/PVP blend filled with different concentrations of nickel chloride Physica B 2011, 406, 3759–3767CrossRef H.M. Ragab, Spectroscopic investigations and electrical properties of PVA/PVP blend filled with different concentrations of nickel chloride Physica B 2011, 406, 3759–3767CrossRef
69.
go back to reference N. Mehta, Meyer–Neldel rule in chalcogenide glasses: recent observations and their consequences. Curr Opin Solid State Mater. Sci. 14, 95–106 (2010)CrossRef N. Mehta, Meyer–Neldel rule in chalcogenide glasses: recent observations and their consequences. Curr Opin Solid State Mater. Sci. 14, 95–106 (2010)CrossRef
70.
go back to reference A.-W. Fouad, Signature of the Meyer–Neldel rule on the correlated barrier-hopping model. J. Appl. Phys. 91, 265–270 (2002)CrossRef A.-W. Fouad, Signature of the Meyer–Neldel rule on the correlated barrier-hopping model. J. Appl. Phys. 91, 265–270 (2002)CrossRef
Metadata
Title
Dielectric relaxation and thermally activated a.c. conduction in (PVDF)/(rGO) nano-composites: role of rGO over different fillers
Authors
Mervat Ismail Mohammed
Suzan Salah Fouad
Neeraj Mehta
Publication date
10-09-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 21/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9941-z

Other articles of this Issue 21/2018

Journal of Materials Science: Materials in Electronics 21/2018 Go to the issue