Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

30-11-2020 | Issue 6/2021

The Journal of Supercomputing 6/2021

DIESEL: A novel deep learning-based tool for SpMV computations and solving sparse linear equation systems

Journal:
The Journal of Supercomputing > Issue 6/2021
Authors:
Thaha Mohammed, Aiiad Albeshri, Iyad Katib, Rashid Mehmood
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Sparse linear algebra is central to many areas of engineering, science, and business. The community has done considerable work on proposing new methods for sparse matrix-vector multiplication (SpMV) computations and iterative sparse solvers on graphical processing units (GPUs). Due to vast variations in matrix features, no single method performs well across all sparse matrices. A few tools on automatic prediction of best-performing SpMV kernels have emerged recently and require many more efforts to fully utilize their potential. The utilization of a GPU by the existing SpMV kernels is far from its full capacity. Moreover, the development and performance analysis of SpMV techniques on GPUs have not been studied in sufficient depth. This paper proposes DIESEL, a deep learning-based tool that predicts and executes the best performing SpMV kernel for a given matrix using a feature set carefully devised by us through rigorous empirical and mathematical instruments. The dataset comprises 1056 matrices from 26 different real-life application domains including computational fluid dynamics, materials, electromagnetics, economics, and more. We propose a range of new metrics and methods for performance analysis, visualization, and comparison of SpMV tools. DIESEL provides better performance with its accuracy \(88.2\%\), workload accuracy \(91.96\%\), and average relative loss \(4.4\%\), compared to \(85.9\%\), \(85.31\%\), and \(7.65\%\) by the next best performing artificial intelligence (AI)-based SpMV tool. The extensive results and analyses presented in this paper provide several key insights into the performance of the SpMV tools and how these relate to the matrix datasets and the performance metrics, allowing the community to further improve and compare basic and AI-based SpMV tools in the future.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

The Journal of Supercomputing 6/2021 Go to the issue

Premium Partner

    Image Credits