Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 7/2022

12-06-2020 | Original Article

Different design configurations of simultaneous saccharification and fermentation to enhance ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide applying the biorefinery concept

Authors: Jéssyca Aline da Costa Correia, Jouciane de Sousa Silva, Luciana Rocha Barros Gonçalves, Maria Valderez Ponte Rocha

Published in: Biomass Conversion and Biorefinery | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Different strategies for simultaneous saccharification and fermentation (SSF) process were developed to enhance the productivity of ethanol by Kluyveromyces marxianus ATCC36907 as a part of biorefinery concept using cashew apple bagasse (CAB) as biomass. CAB was pretreated with 4.3% (v/v) alkaline hydrogen peroxide at pH 11.5 (CAB-AHP). Batch SSF conducted at 45 °C using 10% (w/v) CAB-AHP reported the highest concentration and ethanol yield. In the fed-batch SSF, the highest production (7.91 g ethanol/100gCAB) and ethanol yield (84.69%) were achieved using 10% (w/v) CAB-AHP initial solids load, 4% solid feeding at 24 h, and the feeding of enzymes only in the beginning of the process. The recycling of pretreatment inputs decreased 50% of the batch-SSF efficiencies, saving the consumption of water, H2O2, and NaOH in 66.67%, 48.44%, and 66.67%, respectively. Lignin was extracted from the hydrolysate with yield of 39.2%. Thus, the proposed biorefinery concept utilizes CAB to produce ethanol with high efficiency by fed-batch SSF, pretreatment input recycling, and the utilization of the extracted lignin for future applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafic GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93CrossRef Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafic GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93CrossRef
2.
go back to reference Silva JS, Mendes JS, Correia JAC, Rocha MVP, Micoli L (2018) Cashew apple bagasse as new feedstock for the hydrogen production using dark fermentation process. J Biotechnol 286:71–78CrossRef Silva JS, Mendes JS, Correia JAC, Rocha MVP, Micoli L (2018) Cashew apple bagasse as new feedstock for the hydrogen production using dark fermentation process. J Biotechnol 286:71–78CrossRef
3.
go back to reference Correia JAC, Junior JEM, Gonçalves LRB, Rocha MVP (2015) Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide. Bioresour Technol 179:249–259CrossRef Correia JAC, Junior JEM, Gonçalves LRB, Rocha MVP (2015) Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide. Bioresour Technol 179:249–259CrossRef
4.
go back to reference Chen H-Z, Liu Z-H (2017) Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng Life Sci 17:489–499CrossRef Chen H-Z, Liu Z-H (2017) Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng Life Sci 17:489–499CrossRef
5.
go back to reference Banerjee G, Car S, Scott-Craig J, Hodge DB, Walton JD (2011) Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol Biofuels 4:16CrossRef Banerjee G, Car S, Scott-Craig J, Hodge DB, Walton JD (2011) Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol Biofuels 4:16CrossRef
6.
go back to reference Correia JAC, Junior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresour Technol 139:249–256CrossRef Correia JAC, Junior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresour Technol 139:249–256CrossRef
7.
go back to reference Karagöz P, Rocha IV, Özkan M, Angelidaki I (2012) Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by same vessel saccharification and co-fermentation. Bioresour Technol 104:348–357CrossRef Karagöz P, Rocha IV, Özkan M, Angelidaki I (2012) Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by same vessel saccharification and co-fermentation. Bioresour Technol 104:348–357CrossRef
8.
go back to reference Alvarez-Vasco C, Zhang X (2017) Alkaline hydrogen peroxide (AHP) pretreatment of softwood: enhanced enzymatic hydrolysability at low peroxide loadings. Biomass Bioenergy 96:96–102CrossRef Alvarez-Vasco C, Zhang X (2017) Alkaline hydrogen peroxide (AHP) pretreatment of softwood: enhanced enzymatic hydrolysability at low peroxide loadings. Biomass Bioenergy 96:96–102CrossRef
9.
go back to reference Yuan Z, Wen Y, Kapu NS (2018) Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresour Technol 247:242–249CrossRef Yuan Z, Wen Y, Kapu NS (2018) Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresour Technol 247:242–249CrossRef
10.
go back to reference Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J (2018) Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresour Technol 268:355–362CrossRef Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J (2018) Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresour Technol 268:355–362CrossRef
11.
go back to reference Liu L, Zhang Z, Wang J, Fan Y, Shi W, Liu X, Shun Q (2019) Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. Energy 168:946–952CrossRef Liu L, Zhang Z, Wang J, Fan Y, Shi W, Liu X, Shun Q (2019) Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. Energy 168:946–952CrossRef
12.
go back to reference Selig MJ, Vinzant TB, Himmel EM, Decker SR (2009) The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 155:397–406CrossRef Selig MJ, Vinzant TB, Himmel EM, Decker SR (2009) The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 155:397–406CrossRef
13.
go back to reference Wang W, Chen X, Tan X, Wang Q, Liu Y, He M, Yuan Z (2017) Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 228:235–240CrossRef Wang W, Chen X, Tan X, Wang Q, Liu Y, He M, Yuan Z (2017) Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 228:235–240CrossRef
14.
go back to reference Alencar BRA, Reis ALS, Souza RFR, Morais MA Jr, Menezes RSC, Dutra ED (2017) Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover. Bioresour Technol 241:928–993CrossRef Alencar BRA, Reis ALS, Souza RFR, Morais MA Jr, Menezes RSC, Dutra ED (2017) Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover. Bioresour Technol 241:928–993CrossRef
15.
go back to reference Liu Z-H, Chen H-Z (2017) Two-step size reduction and post-washing of steam exploded corn stover improving simultaneous saccharification and fermentation for ethanol production. Bioresour Technol 223:47–58CrossRef Liu Z-H, Chen H-Z (2017) Two-step size reduction and post-washing of steam exploded corn stover improving simultaneous saccharification and fermentation for ethanol production. Bioresour Technol 223:47–58CrossRef
16.
go back to reference Pessani NK, Atiyeh HK, Wilkins MR, Bellmer DD, Banat IM (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass bythermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102:10618–10624CrossRef Pessani NK, Atiyeh HK, Wilkins MR, Bellmer DD, Banat IM (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass bythermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102:10618–10624CrossRef
17.
go back to reference Saha BC, Nuchols NN, Qureshi N, Kennedy GJ, Iten LB, Cotta MA (2015) Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation. Bioresour Technol 175:17–22CrossRef Saha BC, Nuchols NN, Qureshi N, Kennedy GJ, Iten LB, Cotta MA (2015) Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation. Bioresour Technol 175:17–22CrossRef
18.
go back to reference Phukoetphim N, Salakkam A, Laopaiboon P, Laopaiboon L (2017) Improvement of ethanol production from sweet sorghum juice under batch and fed-batch fermentations: effects of sugar levels, nitrogen supplementation, and feeding regimes. Electron J Biotechnol 26:84–92CrossRef Phukoetphim N, Salakkam A, Laopaiboon P, Laopaiboon L (2017) Improvement of ethanol production from sweet sorghum juice under batch and fed-batch fermentations: effects of sugar levels, nitrogen supplementation, and feeding regimes. Electron J Biotechnol 26:84–92CrossRef
19.
go back to reference Shi X, Liu Y, Dai J, Liu X, Dou S, Teng L, Meng Q, Lu J, Ren X, Wang R (2019) A novel integrated process of high cell-density culture combined with simultaneous saccharification and fermentation for ethanol production. Biomass Bioenergy 121:115–121CrossRef Shi X, Liu Y, Dai J, Liu X, Dou S, Teng L, Meng Q, Lu J, Ren X, Wang R (2019) A novel integrated process of high cell-density culture combined with simultaneous saccharification and fermentation for ethanol production. Biomass Bioenergy 121:115–121CrossRef
20.
go back to reference Zheng T, Yub H, Liu S, Jiang J, Wang K (2020) Achieving high ethanol yield by co-feeding corncob residues and tea-seed cake at high-solids simultaneous saccharification and fermentation. Renew Energy 145:858–866CrossRef Zheng T, Yub H, Liu S, Jiang J, Wang K (2020) Achieving high ethanol yield by co-feeding corncob residues and tea-seed cake at high-solids simultaneous saccharification and fermentation. Renew Energy 145:858–866CrossRef
21.
go back to reference Boonsawang P, Subkaree Y, Srinorakutara T (2012) Ethanol production from palm pressed fiber by prehydrolysis prior to simultaneous saccharification and fermentation (SSF). Biomass Bioenergy 40:127–132CrossRef Boonsawang P, Subkaree Y, Srinorakutara T (2012) Ethanol production from palm pressed fiber by prehydrolysis prior to simultaneous saccharification and fermentation (SSF). Biomass Bioenergy 40:127–132CrossRef
22.
go back to reference Öhgren K, Vehmaanperä J, Siika-Aho M, Galbe M, Viikari L, Zacchi G (2007) High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzym Microb Technol 40(4):607–613CrossRef Öhgren K, Vehmaanperä J, Siika-Aho M, Galbe M, Viikari L, Zacchi G (2007) High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzym Microb Technol 40(4):607–613CrossRef
23.
go back to reference Liu Z-H, Lei Qin L, Zhu J-Q, Li B-Z, Yuan Y-J (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7:167CrossRef Liu Z-H, Lei Qin L, Zhu J-Q, Li B-Z, Yuan Y-J (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7:167CrossRef
24.
go back to reference Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101(13):4959–4964CrossRef Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101(13):4959–4964CrossRef
25.
go back to reference Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocke D (2012) Determination of structural carbohydrates and lignin in biomass, Laboratory Analytical Procedure (LAP) Issue: 3/31/2008 Technical Report NREL/TP-510- 510-42618 Revised August 2012 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocke D (2012) Determination of structural carbohydrates and lignin in biomass, Laboratory Analytical Procedure (LAP) Issue: 3/31/2008 Technical Report NREL/TP-510- 510-42618 Revised August 2012
26.
go back to reference Sluiter A Ruiz R, Scarlata C, Sluiter J, Templeton D (2008a) Determination of extractives in biomass. NREL – Laboratory Analytical Procedure (LAP), Issue: 7/17/2–05 Technical Report NREL/TP-510-42619 Revised January 2008 Sluiter A Ruiz R, Scarlata C, Sluiter J, Templeton D (2008a) Determination of extractives in biomass. NREL – Laboratory Analytical Procedure (LAP), Issue: 7/17/2–05 Technical Report NREL/TP-510-42619 Revised January 2008
27.
go back to reference Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D, Wolfe J (2008b) Determination of total solids in biomass and total dissolved solids in liquid process samples laboratory analytical procedure (LAP) Issue: 3/31/2008. Technical report NREL/TP-510-42621 Revised March 2008 Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D, Wolfe J (2008b) Determination of total solids in biomass and total dissolved solids in liquid process samples laboratory analytical procedure (LAP) Issue: 3/31/2008. Technical report NREL/TP-510-42621 Revised March 2008
28.
go back to reference Rodrigues THS, Barrros EM, Brígido JS, Silva WM, Rocha MVP, Gonçalves LRB (2016) The bioconversion of pretreated cashew apple bagasse into ethanol by SHF and SSF processes. Appl Biochem Biotechnol 178:1167–1183CrossRef Rodrigues THS, Barrros EM, Brígido JS, Silva WM, Rocha MVP, Gonçalves LRB (2016) The bioconversion of pretreated cashew apple bagasse into ethanol by SHF and SSF processes. Appl Biochem Biotechnol 178:1167–1183CrossRef
29.
go back to reference Rocha MVP, Rodrigues THS, Melo VMM, Gonçalves LRB, Macedo GR (2011) Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025. J Ind Microbiol Biotechnol 38:1099–1107CrossRef Rocha MVP, Rodrigues THS, Melo VMM, Gonçalves LRB, Macedo GR (2011) Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025. J Ind Microbiol Biotechnol 38:1099–1107CrossRef
30.
go back to reference Barros EM, Carvalho VM, Rodrigues THS, Rocha MVP, Gonçalves LRB (2017) Comparison of strategies for the simultaneous saccharification and fermentation of cashew apple bagasse using a thermotolerant Kluyveromyces marxianus to enhance cellulosic ethanol production. Chem Eng J 307:939–947CrossRef Barros EM, Carvalho VM, Rodrigues THS, Rocha MVP, Gonçalves LRB (2017) Comparison of strategies for the simultaneous saccharification and fermentation of cashew apple bagasse using a thermotolerant Kluyveromyces marxianus to enhance cellulosic ethanol production. Chem Eng J 307:939–947CrossRef
31.
go back to reference De Albuquerque TL, Silva JS, De Macedo AC, Gonçalves LRB, Rocha MVP (2019) Biotechnological strategies for the lignin-based biorefinery valorization. In: Reference module in chemistry, molecular sciences and chemical engineering, 1st edn. Elsevier, Amsterdãm De Albuquerque TL, Silva JS, De Macedo AC, Gonçalves LRB, Rocha MVP (2019) Biotechnological strategies for the lignin-based biorefinery valorization. In: Reference module in chemistry, molecular sciences and chemical engineering, 1st edn. Elsevier, Amsterdãm
32.
go back to reference Albuquerque TL, Gomes SDL, Junior JEM, Silva IJ Jr, Rocha MVP (2015) Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today 255:33–40CrossRef Albuquerque TL, Gomes SDL, Junior JEM, Silva IJ Jr, Rocha MVP (2015) Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today 255:33–40CrossRef
33.
go back to reference Hua Y, Wang J, Zhu Y, Zhang B, Kong X, Li W, Wang D, Hong J (2019) Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microb Cell Factories 18:1–24CrossRef Hua Y, Wang J, Zhu Y, Zhang B, Kong X, Li W, Wang D, Hong J (2019) Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microb Cell Factories 18:1–24CrossRef
34.
go back to reference Moreno AD, Ibarra D, Ballesteros I, González A, Ballesteros M (2013) Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour Technol 135:239–245CrossRef Moreno AD, Ibarra D, Ballesteros I, González A, Ballesteros M (2013) Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour Technol 135:239–245CrossRef
35.
go back to reference Hoyer H, Galbe M, Zacchi G (2013) The effect of prehydrolysis and improved mixing on high-solids batch simultaneous saccharification and fermentation of spruce to ethanol. Process Biochem 48:289–293CrossRef Hoyer H, Galbe M, Zacchi G (2013) The effect of prehydrolysis and improved mixing on high-solids batch simultaneous saccharification and fermentation of spruce to ethanol. Process Biochem 48:289–293CrossRef
36.
go back to reference García JF, Anchez S, Bravo V, Cuevas M, Rigal L, Gaset A (2011) Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis. Holzforschung 65:59–65CrossRef García JF, Anchez S, Bravo V, Cuevas M, Rigal L, Gaset A (2011) Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis. Holzforschung 65:59–65CrossRef
37.
go back to reference Paulová L, Patáková P, Rychtera M, Melzoch K (2014) High solid fed-batch delayed inoculation for improved production of bioethanol from wheat straw. Fuel 122:294–300CrossRef Paulová L, Patáková P, Rychtera M, Melzoch K (2014) High solid fed-batch delayed inoculation for improved production of bioethanol from wheat straw. Fuel 122:294–300CrossRef
38.
go back to reference Wang W, Kang L, Wie H, Arora R, Lee YY (2011) Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 164(7):1139–1149CrossRef Wang W, Kang L, Wie H, Arora R, Lee YY (2011) Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 164(7):1139–1149CrossRef
39.
go back to reference Gomes AC, Moysés DN, Anna LMMS, Castro A (2018) Fed-batch strategies for saccharification of pilot-scale mild-acid and alkali pretreated sugarcane bagasse: effects of solid loading and surfactant addition. Ind Crop Prod 119:283–289CrossRef Gomes AC, Moysés DN, Anna LMMS, Castro A (2018) Fed-batch strategies for saccharification of pilot-scale mild-acid and alkali pretreated sugarcane bagasse: effects of solid loading and surfactant addition. Ind Crop Prod 119:283–289CrossRef
40.
go back to reference Kossatz HL, Rose SH, Viljoen-Bloom M, Zyl WHV (2017) Production of ethanol from steam exploded triticale straw in a simultaneous saccharification and fermentation process. Process Biochem 53:10–16CrossRef Kossatz HL, Rose SH, Viljoen-Bloom M, Zyl WHV (2017) Production of ethanol from steam exploded triticale straw in a simultaneous saccharification and fermentation process. Process Biochem 53:10–16CrossRef
41.
go back to reference Gould JM (1985) Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol Bioeng XXVII:225–231CrossRef Gould JM (1985) Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol Bioeng XXVII:225–231CrossRef
42.
go back to reference Li Y, Cui J, Zhang G, Liu Z, Guan H, Hwang H, Aker WG, Wang P (2016) Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresour Technol 214:144–149CrossRef Li Y, Cui J, Zhang G, Liu Z, Guan H, Hwang H, Aker WG, Wang P (2016) Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresour Technol 214:144–149CrossRef
43.
go back to reference Gerbrandt K, Chu PL, Simmonds A, Mullins KA, MacLean HL, Griffin WM, Saville BA (2016) Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Curr Opin Biotechnol 38:63–70CrossRef Gerbrandt K, Chu PL, Simmonds A, Mullins KA, MacLean HL, Griffin WM, Saville BA (2016) Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use. Curr Opin Biotechnol 38:63–70CrossRef
44.
go back to reference Xu Y, Lia J, Zhang M, Wang D (2018) Modified simultaneous saccharification and fermentation to enhance bioethanol titers and yields. Fuel 215:647–654CrossRef Xu Y, Lia J, Zhang M, Wang D (2018) Modified simultaneous saccharification and fermentation to enhance bioethanol titers and yields. Fuel 215:647–654CrossRef
45.
go back to reference Reis CLB, Silva LMA, Rodrigues THS, Félix AKN, Santiago-Aguiar RS, Canuto KM, Rocha MVP (2017) Pretreatment of cashew apple bagasse using protic ionic liquids: enhanced enzymatic hydrolysis. Bioresour Technol 224:694–701CrossRef Reis CLB, Silva LMA, Rodrigues THS, Félix AKN, Santiago-Aguiar RS, Canuto KM, Rocha MVP (2017) Pretreatment of cashew apple bagasse using protic ionic liquids: enhanced enzymatic hydrolysis. Bioresour Technol 224:694–701CrossRef
46.
go back to reference Lopes AM, João KG, Rubik DF, Bogel-Lukasik E, Duarte LC, Andreaus J, Bogel-Lukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 142:198–208CrossRef Lopes AM, João KG, Rubik DF, Bogel-Lukasik E, Duarte LC, Andreaus J, Bogel-Lukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 142:198–208CrossRef
47.
go back to reference Cao W, Sun C, Qiu J, Li X, Liu R, Zhang L (2016) Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean J Chem Eng 33:873–879CrossRef Cao W, Sun C, Qiu J, Li X, Liu R, Zhang L (2016) Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean J Chem Eng 33:873–879CrossRef
Metadata
Title
Different design configurations of simultaneous saccharification and fermentation to enhance ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide applying the biorefinery concept
Authors
Jéssyca Aline da Costa Correia
Jouciane de Sousa Silva
Luciana Rocha Barros Gonçalves
Maria Valderez Ponte Rocha
Publication date
12-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 7/2022
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00796-w

Other articles of this Issue 7/2022

Biomass Conversion and Biorefinery 7/2022 Go to the issue