Skip to main content
Top

2016 | OriginalPaper | Chapter

11. Diffusion Flames

Author : Ali S. Rangwala

Published in: SFPE Handbook of Fire Protection Engineering

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fires involve reactants, usually fuel and air, not intimately mixed at a molecular level before combustion. Usually, the fuel is in the solid or liquid state so transfer of material across a phase boundary (phase change) must also occur. The vaporized fuel must combine with oxygen from air to form a flammable mixture, which when ignited forms the flame zone. In most fire problems, this mixing of fuel vapor and oxygen takes place mostly by diffusion and takes orders of magnitude longer time compared with that of a chemical reaction. Therefore, diffusion of species is the primary controlling process during such burning behavior. A fundamental understanding of diffusion flames then involves exploring the mechanisms associated with the transport of the reactants and the resulting flame structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arias-Zugasti, M. and Rosner, D.E., Soret transport, unequal diffusivity, and dilution effects on laminar diffusion flame temperatures and positions. Combustion and flame, 2008. 153(1): p. 33–44.CrossRef Arias-Zugasti, M. and Rosner, D.E., Soret transport, unequal diffusivity, and dilution effects on laminar diffusion flame temperatures and positions. Combustion and flame, 2008. 153(1): p. 33–44.CrossRef
2.
go back to reference Smyth, K.C., Miller, J.H., Dorfman, R.C., Mallard, W.G., and Santoro, R.J., Soot inception in a methane/air diffusion flame as characterized by detailed species profiles. Combustion and flame, 1985. 62(2): p. 157–181.CrossRef Smyth, K.C., Miller, J.H., Dorfman, R.C., Mallard, W.G., and Santoro, R.J., Soot inception in a methane/air diffusion flame as characterized by detailed species profiles. Combustion and flame, 1985. 62(2): p. 157–181.CrossRef
3.
go back to reference Spalding, D.B., Combustion of liquid fuel in gas stream. Fuel, 1950. 29: p. 2–7. Spalding, D.B., Combustion of liquid fuel in gas stream. Fuel, 1950. 29: p. 2–7.
4.
go back to reference Spalding, D.B., Some fundamentals of combustion. Gas turbine series vol. 2. 1955, London: Academic Press, Butterworths Scientific Publications. Spalding, D.B., Some fundamentals of combustion. Gas turbine series vol. 2. 1955, London: Academic Press, Butterworths Scientific Publications.
5.
go back to reference Chakrabarty, R.K., Moosmüller, H., Arnott, W.P., Garro, M.A., Tian, G., Slowik, J.G., Cross, E.S., Han, J.-H., Davidovits, P., and Onasch, T.B., Low fractal dimension cluster-dilute soot aggregates from a premixed flame. Physical review letters, 2009. 102(23): p. 235504.CrossRef Chakrabarty, R.K., Moosmüller, H., Arnott, W.P., Garro, M.A., Tian, G., Slowik, J.G., Cross, E.S., Han, J.-H., Davidovits, P., and Onasch, T.B., Low fractal dimension cluster-dilute soot aggregates from a premixed flame. Physical review letters, 2009. 102(23): p. 235504.CrossRef
6.
go back to reference Frenklach, M. and Wang, H. Detailed modeling of soot particle nucleation and growth. in Symposium (International) on Combustion. 1991. Elsevier. Frenklach, M. and Wang, H. Detailed modeling of soot particle nucleation and growth. in Symposium (International) on Combustion. 1991. Elsevier.
7.
go back to reference Sunderland, P. and Faeth, G., Soot formation in hydrocarbon/air laminar jet diffusion flames. Combustion and flame, 1996. 105(1): p. 132–146.CrossRef Sunderland, P. and Faeth, G., Soot formation in hydrocarbon/air laminar jet diffusion flames. Combustion and flame, 1996. 105(1): p. 132–146.CrossRef
8.
go back to reference Lautenberger, C.W., De Ris, J.L., Dembsey, N.A., Barnett, J.R., and Baum, H.R., A simplified model for soot formation and oxidation in cfd simulation of non-premixed hydrocarbon flames. Fire Safety Journal, 2005. 40(2): p. 141–176.CrossRef Lautenberger, C.W., De Ris, J.L., Dembsey, N.A., Barnett, J.R., and Baum, H.R., A simplified model for soot formation and oxidation in cfd simulation of non-premixed hydrocarbon flames. Fire Safety Journal, 2005. 40(2): p. 141–176.CrossRef
9.
go back to reference Vander Wal, R.L. and Tomasek, A.J., Soot oxidation: Dependence upon initial nanostructure. Combustion and flame, 2003. 134(1): p. 1–9.CrossRef Vander Wal, R.L. and Tomasek, A.J., Soot oxidation: Dependence upon initial nanostructure. Combustion and flame, 2003. 134(1): p. 1–9.CrossRef
10.
go back to reference Rangwala, A.S. Flame spread analysis using a variable b-number. in Proc. Fire Safety Sci. 2008. Karlsruhe, Germany. Rangwala, A.S. Flame spread analysis using a variable b-number. in Proc. Fire Safety Sci. 2008. Karlsruhe, Germany.
11.
go back to reference Kent, J. and Wagner, H.G., Who do diffusion flames emit smoke. Combustion Science and Technology, 1984. 41(5–6): p. 245–269.CrossRef Kent, J. and Wagner, H.G., Who do diffusion flames emit smoke. Combustion Science and Technology, 1984. 41(5–6): p. 245–269.CrossRef
12.
go back to reference De Ris, J. and Cheng, X.F., The role of smoke point in material flammability testing. Proc. Fire Safety Sci., 1994. 4: p. 301–312.CrossRef De Ris, J. and Cheng, X.F., The role of smoke point in material flammability testing. Proc. Fire Safety Sci., 1994. 4: p. 301–312.CrossRef
13.
go back to reference Markstein, G.H. Correlations for smoke points and radiant emission of laminar hydrocarbon diffusion flames. in Symposium (International) on Combustion. 1989. Elsevier. Markstein, G.H. Correlations for smoke points and radiant emission of laminar hydrocarbon diffusion flames. in Symposium (International) on Combustion. 1989. Elsevier.
14.
go back to reference Delichatsios, M., Smoke yields from turbulent buoyant jet flames. Fire Safety Journal, 1993. 20(4): p. 299–311.CrossRef Delichatsios, M., Smoke yields from turbulent buoyant jet flames. Fire Safety Journal, 1993. 20(4): p. 299–311.CrossRef
15.
go back to reference Lautenberger, C.W., Cfd simulation of soot formation and flame radiation, 2002, WORCESTER POLYTECHNIC INSTITUTE. Lautenberger, C.W., Cfd simulation of soot formation and flame radiation, 2002, WORCESTER POLYTECHNIC INSTITUTE.
16.
go back to reference Zeldovich, I., Barenblatt, G.I., Librovich, V., and Makhviladze, G., Mathematical theory of combustion and explosions. Moscow: Nauka, 1985.CrossRef Zeldovich, I., Barenblatt, G.I., Librovich, V., and Makhviladze, G., Mathematical theory of combustion and explosions. Moscow: Nauka, 1985.CrossRef
17.
go back to reference Shvab, V.A., Goz. Energ. izd. Moscow-Leningrad, 1948. Shvab, V.A., Goz. Energ. izd. Moscow-Leningrad, 1948.
18.
go back to reference Zel'dovich, Y.B., Zhur. Tekhn. Fiz. English translation: NACA Tech. Memo No. 1296 (1950), 1949. 19: p. 1199. Zel'dovich, Y.B., Zhur. Tekhn. Fiz. English translation: NACA Tech. Memo No. 1296 (1950), 1949. 19: p. 1199.
19.
go back to reference Burke, S.P.a.S., T. E. W.,, Diffusion flames. Industrial & Engineering Chemistry, 1928. 20(10): p. 998–1004. Burke, S.P.a.S., T. E. W.,, Diffusion flames. Industrial & Engineering Chemistry, 1928. 20(10): p. 998–1004.
20.
go back to reference Rangwala, A.S., Raghavan, V., Sipe, J.E., and Okano, T., A new property evaluation scheme for mass transfer analysis in fire problems. Fire Safety Journal, 2009. 44(4): p. 652–658.CrossRef Rangwala, A.S., Raghavan, V., Sipe, J.E., and Okano, T., A new property evaluation scheme for mass transfer analysis in fire problems. Fire Safety Journal, 2009. 44(4): p. 652–658.CrossRef
21.
go back to reference Law, C.K. and Williams, F.A., Kinetics and convection in the combustion of alkane droplets. Comb. Flame, 1972. 19: p. 393–405.CrossRef Law, C.K. and Williams, F.A., Kinetics and convection in the combustion of alkane droplets. Comb. Flame, 1972. 19: p. 393–405.CrossRef
22.
go back to reference Quintiere, J.G., Fundamentals of fire phenomena. 2006: John Wiley & Sons, New York. Quintiere, J.G., Fundamentals of fire phenomena. 2006: John Wiley & Sons, New York.
23.
go back to reference Drysdale, D., An introduction to fire dynamics. 1998: John Wiley & Sons, New York. Drysdale, D., An introduction to fire dynamics. 1998: John Wiley & Sons, New York.
24.
go back to reference Raghavan, V., Rangwala, A., and Torero, J., Laminar flame propagation on a horizontal fuel surface: Verification of classical emmons solution. Combustion Theory and Modelling, 2009. 13(1): p. 121–141.CrossRefMATH Raghavan, V., Rangwala, A., and Torero, J., Laminar flame propagation on a horizontal fuel surface: Verification of classical emmons solution. Combustion Theory and Modelling, 2009. 13(1): p. 121–141.CrossRefMATH
25.
go back to reference Annamalai, K. and Sibulkin, M., Flame spread over combustible surfaces for laminar flow systems part i: Excess fuel and heat flux. Combustion Science and Technology, 1979. 19(5): p. 167–183.CrossRef Annamalai, K. and Sibulkin, M., Flame spread over combustible surfaces for laminar flow systems part i: Excess fuel and heat flux. Combustion Science and Technology, 1979. 19(5): p. 167–183.CrossRef
26.
go back to reference Ali, S.M., Raghavan, V., and Rangwala, A.S., A numerical study of quasi-steady burning characteristics of a condensed fuel: Effect of angular orientation of fuel surface. Combustion Theory and Modelling, 2010. 14(4): p. 495–518.CrossRefMATH Ali, S.M., Raghavan, V., and Rangwala, A.S., A numerical study of quasi-steady burning characteristics of a condensed fuel: Effect of angular orientation of fuel surface. Combustion Theory and Modelling, 2010. 14(4): p. 495–518.CrossRefMATH
27.
go back to reference Roper, F., The prediction of laminar jet diffusion flame sizes: Part i. Theoretical model. Combustion and flame, 1977. 29: p. 219–226. Roper, F., The prediction of laminar jet diffusion flame sizes: Part i. Theoretical model. Combustion and flame, 1977. 29: p. 219–226.
28.
go back to reference Roper, F., Laminar diffusion flame sizes for curved slot burners giving fan-shaped flames. Combustion and flame, 1978. 31: p. 251–258.CrossRef Roper, F., Laminar diffusion flame sizes for curved slot burners giving fan-shaped flames. Combustion and flame, 1978. 31: p. 251–258.CrossRef
29.
go back to reference Turns, S.R., An introduction to combustion, 2000, McGraw-Hill, New York. Turns, S.R., An introduction to combustion, 2000, McGraw-Hill, New York.
30.
go back to reference Sunderland, P., Quintiere, J., Tabaka, G., Lian, D., and Chiu, C.-W., Analysis and measurement of candle flame shapes. Proceedings of the Combustion Institute, 2011. 33(2): p. 2489–2496.CrossRef Sunderland, P., Quintiere, J., Tabaka, G., Lian, D., and Chiu, C.-W., Analysis and measurement of candle flame shapes. Proceedings of the Combustion Institute, 2011. 33(2): p. 2489–2496.CrossRef
32.
go back to reference Bilger, R. The structure of turbulent nonpremixed flames. in Symposium (International) on Combustion. 1989. Elsevier. Bilger, R. The structure of turbulent nonpremixed flames. in Symposium (International) on Combustion. 1989. Elsevier.
33.
go back to reference Peters, N., Turbulent combustion. 2000: Cambridge university press. Peters, N., Turbulent combustion. 2000: Cambridge university press.
34.
go back to reference Libby, P.A. and Williams, F.A., Turbulent reacting flows. Turbulent Reacting Flows, 1980. 1. Libby, P.A. and Williams, F.A., Turbulent reacting flows. Turbulent Reacting Flows, 1980. 1.
35.
go back to reference Dahm, W. and Dimotakis, P., Measurements of entrainment and mixing in turbulent jets. AIAA journal, 1987. 25(9): p. 1216–1223.CrossRef Dahm, W. and Dimotakis, P., Measurements of entrainment and mixing in turbulent jets. AIAA journal, 1987. 25(9): p. 1216–1223.CrossRef
36.
go back to reference Takeno, T. and Kotani, Y. Transition and structure of turbulent jet diffusion flame. in AIAA, Aerospace Sciences Meeting. 1977. Takeno, T. and Kotani, Y. Transition and structure of turbulent jet diffusion flame. in AIAA, Aerospace Sciences Meeting. 1977.
37.
go back to reference Pope, S.B., Turbulent flows. 2000: Cambridge university press. Pope, S.B., Turbulent flows. 2000: Cambridge university press.
38.
go back to reference Peters, N., Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3): p. 319–339. Peters, N., Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3): p. 319–339.
39.
go back to reference Tamanini, F. A numerical model for the prediction of radiation-controlled turbulent wall fires. in Symposium (International) on Combustion. 1979. Elsevier. Tamanini, F. A numerical model for the prediction of radiation-controlled turbulent wall fires. in Symposium (International) on Combustion. 1979. Elsevier.
40.
go back to reference Delichatsios, M. and Orloff, L. Effects of turbulence on flame radiation from diffusion flames. in Symposium (International) on Combustion. 1989. Elsevier. Delichatsios, M. and Orloff, L. Effects of turbulence on flame radiation from diffusion flames. in Symposium (International) on Combustion. 1989. Elsevier.
41.
go back to reference Williams, F., Recent advances in theoretical descriptions of turbulent diffusion flames. Turbulent mixing in nonreactive and reactive flows, p. 202–208. Williams, F., Recent advances in theoretical descriptions of turbulent diffusion flames. Turbulent mixing in nonreactive and reactive flows, p. 202–208.
42.
go back to reference Kuznetsov, V., The effect of turbulence on the formation of large superequilibrium concentrations of atoms and free radicals in diffusion flames. Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, p. 3–9. Kuznetsov, V., The effect of turbulence on the formation of large superequilibrium concentrations of atoms and free radicals in diffusion flames. Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, p. 3–9.
43.
go back to reference Gore, J. and Faeth, G. Structure and spectral radiation properties of turbulent ethylene/air diffusion flames. in Proc. Combust. Instit. 1988. Elsevier. Gore, J. and Faeth, G. Structure and spectral radiation properties of turbulent ethylene/air diffusion flames. in Proc. Combust. Instit. 1988. Elsevier.
44.
go back to reference Faeth, G., Gore, J., Chuech, S., and Jeng, S.-M., Radiation from turbulent diffusion flames. Annual Review of Heat Transfer, 1989. 2(2). Faeth, G., Gore, J., Chuech, S., and Jeng, S.-M., Radiation from turbulent diffusion flames. Annual Review of Heat Transfer, 1989. 2(2).
45.
go back to reference De Ris, J.a.O., L.,, The role of buoyancy direction and radiation in turbulent diffusion flames on surfaces. Fifteenth Symposium (International) on Combustion, 1974. 15: p. 175–182. De Ris, J.a.O., L.,, The role of buoyancy direction and radiation in turbulent diffusion flames on surfaces. Fifteenth Symposium (International) on Combustion, 1974. 15: p. 175–182.
46.
go back to reference Orloff, L., De Ris, J., and Delichatsios, M., Radiation from buoyant turbulent diffusion flames. Combustion Science and Technology, 1992. 84(1–6): p. 177–186.CrossRef Orloff, L., De Ris, J., and Delichatsios, M., Radiation from buoyant turbulent diffusion flames. Combustion Science and Technology, 1992. 84(1–6): p. 177–186.CrossRef
47.
go back to reference Delichatsios, M., De Ris, J., and Orloff, L. An enhanced flame radiation burner. in Symposium (International) on Combustion. 1992. Elsevier. Delichatsios, M., De Ris, J., and Orloff, L. An enhanced flame radiation burner. in Symposium (International) on Combustion. 1992. Elsevier.
48.
go back to reference Williams, F., A review of flame extinction. Fire Safety Journal, 1981. 3(3): p. 163–175.CrossRef Williams, F., A review of flame extinction. Fire Safety Journal, 1981. 3(3): p. 163–175.CrossRef
49.
go back to reference Damköhler, G., The effect of turbulence on the flame velocity in gas mixtures. 1947. Damköhler, G., The effect of turbulence on the flame velocity in gas mixtures. 1947.
50.
go back to reference Roberts, A. and Wuince, B., A limiting condition for the burning of flammable liquids. Combustion and flame, 1973. 20(2): p. 245–251.CrossRef Roberts, A. and Wuince, B., A limiting condition for the burning of flammable liquids. Combustion and flame, 1973. 20(2): p. 245–251.CrossRef
51.
go back to reference Torero, J.L., Vietoris, T., Legros, G. And Joulain, P.,, Estimation of a total mass transfer number from the standoff distance of a spreading flame. Combustion Science and Technology, 2002. 174(11): p. 187–203.CrossRef Torero, J.L., Vietoris, T., Legros, G. And Joulain, P.,, Estimation of a total mass transfer number from the standoff distance of a spreading flame. Combustion Science and Technology, 2002. 174(11): p. 187–203.CrossRef
52.
53.
go back to reference Linan, A., The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronautica, 1974. 1(7): p. 1007–1039.CrossRef Linan, A., The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronautica, 1974. 1(7): p. 1007–1039.CrossRef
54.
go back to reference Rasbash, D.J., The extinction of fires by water sprays. Fire Res. Abst. Rev., 1962. 4(1)(28–53). Rasbash, D.J., The extinction of fires by water sprays. Fire Res. Abst. Rev., 1962. 4(1)(28–53).
55.
go back to reference Quintiere, J. and Rangwala, A., A theory for flame extinction based on flame temperature. Fire and Materials, 2004. 28(5): p. 387–402.CrossRef Quintiere, J. and Rangwala, A., A theory for flame extinction based on flame temperature. Fire and Materials, 2004. 28(5): p. 387–402.CrossRef
56.
go back to reference T'ien, J.S. and Endo, M., Material flammability: A combustion science perspective. Proceedia Eng., 2013. 62: p. 120–129.CrossRef T'ien, J.S. and Endo, M., Material flammability: A combustion science perspective. Proceedia Eng., 2013. 62: p. 120–129.CrossRef
Metadata
Title
Diffusion Flames
Author
Ali S. Rangwala
Copyright Year
2016
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_11