Skip to main content
Top

2019 | OriginalPaper | Chapter

8. Digital Filter Structures

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

What we have learnt so far is how to design either an IIR or FIR digital filter to satisfy a given set of specifications in the frequency domain. We have also seen examples based on MATLAB wherein filtering operations are carried out by specific functions. We really don’t know how these functions really work. If you are a S/W or H/W engineer and want to implement a digital filter in software or hardware, you should be able to describe the flow of signal from the input to the output. Thus, a digital filter structure describes the flow of signal as it propagates from the input to the output sample by sample. This filtering operation is described by a signal flow graph, which is a block diagram with blocks corresponding to the arithmetic operations of addition, multiplication, and unit delays. The blocks are connected by lines with arrows pointing in the direction of signal flow. In digital filter terminology, an adder has two inputs and one output, as shown in Fig. 8.1a. Similarly, a multiplier accepts an input signal and multiplies it by a coefficient a to produce an output, as shown in Fig. 8.1b. A unit delay block is a register, which can hold a sample from its input. The sample can be read from its output after one sample interval. Figure 8.1c illustrates a unit delay element. Note that the unit delay operation in the Z-domain is denoted by z −1. Finally, Fig. 8.1d shows how a signal is tapped into. So, these are the basic building blocks of a digital filter structure. Let us look at a simple example.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Agarwal RC, Burrus CS (1975) New recursive digital filter structures having very low sensitivity and roundoff noise. IEEE Trans Circ Syst, CAS-22(12): 921–927CrossRef Agarwal RC, Burrus CS (1975) New recursive digital filter structures having very low sensitivity and roundoff noise. IEEE Trans Circ Syst, CAS-22(12): 921–927CrossRef
3.
go back to reference Buttner M (1977) Elimination of limit cycles in digital filters with very low increase in the quantization noise. IEEE Trans Circ Syst CAS-24:300–304CrossRef Buttner M (1977) Elimination of limit cycles in digital filters with very low increase in the quantization noise. IEEE Trans Circ Syst CAS-24:300–304CrossRef
4.
go back to reference Chan DSK, Rabiner LR (1973) Analysis of quantization errors in the direct form for finite impulse response digital filters. IEEE Trans Audio Electroacoust AU-21:354–366CrossRef Chan DSK, Rabiner LR (1973) Analysis of quantization errors in the direct form for finite impulse response digital filters. IEEE Trans Audio Electroacoust AU-21:354–366CrossRef
5.
go back to reference Chang T-L, White SA (1981) An error cancellation digital-filter structure and its distributed-arithmetic implementation. IEEE Trans Circ Syst CAS-28:339–342CrossRef Chang T-L, White SA (1981) An error cancellation digital-filter structure and its distributed-arithmetic implementation. IEEE Trans Circ Syst CAS-28:339–342CrossRef
6.
go back to reference Classen TACM, Mecklenbrauker WFG, Peek JBH (1973) Some remarks on the classifications of limit cycles in digital filters. Philips Res Rep 28:297–305 Classen TACM, Mecklenbrauker WFG, Peek JBH (1973) Some remarks on the classifications of limit cycles in digital filters. Philips Res Rep 28:297–305
7.
go back to reference Crochiere RE, Oppenheim AV (1975) Analysis of linear digital networks. Proc IEEE 62:581–595CrossRef Crochiere RE, Oppenheim AV (1975) Analysis of linear digital networks. Proc IEEE 62:581–595CrossRef
8.
go back to reference Dutta Roy SC (2007) A new canonic lattice realization of arbitrary FIR transfer functions. IETE J Res 53:13–18CrossRef Dutta Roy SC (2007) A new canonic lattice realization of arbitrary FIR transfer functions. IETE J Res 53:13–18CrossRef
9.
go back to reference Dutta Roy SC (2008) A note on canonic lattice realization of arbitrary FIR transfer functions. IETE J Res 54:71–72CrossRef Dutta Roy SC (2008) A note on canonic lattice realization of arbitrary FIR transfer functions. IETE J Res 54:71–72CrossRef
10.
go back to reference Ebert PM, Mazo JE, Taylor MG (1969) Overflow oscillations in digital filters. Bell Syst Tech J 48:2999–3020CrossRef Ebert PM, Mazo JE, Taylor MG (1969) Overflow oscillations in digital filters. Bell Syst Tech J 48:2999–3020CrossRef
11.
go back to reference Fettweis A (1971) Digital filter structures related to classical filter networks. Archiv fur Elektrotechnik und Ubertragungstechnik 25:79–81 Fettweis A (1971) Digital filter structures related to classical filter networks. Archiv fur Elektrotechnik und Ubertragungstechnik 25:79–81
12.
go back to reference Fettweis A (1975) On adapters for wave digital filters. IEEE Trans Acoust Speech Sig Process ASSP-23(6):516–525CrossRef Fettweis A (1975) On adapters for wave digital filters. IEEE Trans Acoust Speech Sig Process ASSP-23(6):516–525CrossRef
13.
go back to reference Gray AH Jr, Markel JD (1973) Digital lattice and ladder filter synthesis. IEEE Trans Audio Electroacoust AU-21:491–500CrossRef Gray AH Jr, Markel JD (1973) Digital lattice and ladder filter synthesis. IEEE Trans Audio Electroacoust AU-21:491–500CrossRef
14.
go back to reference Jackson LB (1969) An analysis of limit cycles due to multiplicative rounding in recursive digital filters. In: Proceedings, 7th Allerten conference on circuit and system theory, Monticello, IL, pp 69–78 Jackson LB (1969) An analysis of limit cycles due to multiplicative rounding in recursive digital filters. In: Proceedings, 7th Allerten conference on circuit and system theory, Monticello, IL, pp 69–78
15.
go back to reference Jackson LB (1970) On the interaction of roundoff noise and dynamic range in digital filters. Bell Syst Tech J 49:159–184MathSciNetCrossRef Jackson LB (1970) On the interaction of roundoff noise and dynamic range in digital filters. Bell Syst Tech J 49:159–184MathSciNetCrossRef
16.
go back to reference Jackson LB (1970) Roundoff-noise analysis for fixed-point digital filters realized in cascade or parallel form. IEEE Trans Audio Electroacoust AU-18:107–122CrossRef Jackson LB (1970) Roundoff-noise analysis for fixed-point digital filters realized in cascade or parallel form. IEEE Trans Audio Electroacoust AU-18:107–122CrossRef
17.
go back to reference Jiang Z, Willson AN Jr (1997) Efficient digital filtering architectures using pipelining/interleaving. IEEE Trans Circuits Syst Part II 44:110–119CrossRef Jiang Z, Willson AN Jr (1997) Efficient digital filtering architectures using pipelining/interleaving. IEEE Trans Circuits Syst Part II 44:110–119CrossRef
18.
go back to reference Kan EPF, Aggarwal JK (1971) Error analysis in digital filters employing floating-point arithmetic. IEEE Trans Circ Theory CT-18:678–686CrossRef Kan EPF, Aggarwal JK (1971) Error analysis in digital filters employing floating-point arithmetic. IEEE Trans Circ Theory CT-18:678–686CrossRef
19.
go back to reference Laroche L (1999) A modified lattice structure with pleasant scaling properties. IEEE Trans Sig Process 47:3423–3425CrossRef Laroche L (1999) A modified lattice structure with pleasant scaling properties. IEEE Trans Sig Process 47:3423–3425CrossRef
20.
go back to reference Lawrence VB, Mina KV (1978) Control of limit cycle oscillations in second-order recursive digital filters using constrained random quantization. IEEE Trans Acoust Speech Sig Process ASSP-26:127–134CrossRef Lawrence VB, Mina KV (1978) Control of limit cycle oscillations in second-order recursive digital filters using constrained random quantization. IEEE Trans Acoust Speech Sig Process ASSP-26:127–134CrossRef
21.
go back to reference Liu B, Kaneko T (1969) Error analysis of digital filters realized in floating-point arithmetic. Proc IEEE 57:1735–1747CrossRef Liu B, Kaneko T (1969) Error analysis of digital filters realized in floating-point arithmetic. Proc IEEE 57:1735–1747CrossRef
22.
go back to reference Long JJ, Trick TN (1973) An absolute bound on limit cycles due to roundoff errors in digital filters. IEEE Trans Audio Electroacoust AU-21:27–30CrossRef Long JJ, Trick TN (1973) An absolute bound on limit cycles due to roundoff errors in digital filters. IEEE Trans Audio Electroacoust AU-21:27–30CrossRef
23.
go back to reference Makhoul J (1978) A class of all-zero lattice digital filters: properties and applications. IEEE Trans Acoust Speech Sig Process 26:304–314CrossRef Makhoul J (1978) A class of all-zero lattice digital filters: properties and applications. IEEE Trans Acoust Speech Sig Process 26:304–314CrossRef
24.
go back to reference Mills WL, Mullis CT, Roberts RA (1978) Digital filter realizations without overflow oscillations. IEEE Trans Acoust Speech Sig Process ASSP-26:334–338MathSciNetCrossRef Mills WL, Mullis CT, Roberts RA (1978) Digital filter realizations without overflow oscillations. IEEE Trans Acoust Speech Sig Process ASSP-26:334–338MathSciNetCrossRef
25.
go back to reference Mitra SK, Sherwood RJ (1973) Digital ladder networks. IEEE Trans Audio Electroacoust AU-21:30–36CrossRef Mitra SK, Sherwood RJ (1973) Digital ladder networks. IEEE Trans Audio Electroacoust AU-21:30–36CrossRef
26.
go back to reference Mitra SK, Hirano K, Sakaguchi H (1974) A simple method of computing the input quantization and the multiplication round off errors in digital filters. IEEE Trans Acoust Speech Sig Process ASSP-22:326–329CrossRef Mitra SK, Hirano K, Sakaguchi H (1974) A simple method of computing the input quantization and the multiplication round off errors in digital filters. IEEE Trans Acoust Speech Sig Process ASSP-22:326–329CrossRef
27.
go back to reference Mitra SK, Sherwood RJ (1974) Estimation of pole-zero displacements of a digital filter due to coefficient quantization. IEEE Trans Circ Syst CAS-21:116–124CrossRef Mitra SK, Sherwood RJ (1974) Estimation of pole-zero displacements of a digital filter due to coefficient quantization. IEEE Trans Circ Syst CAS-21:116–124CrossRef
28.
go back to reference Mitra SK, Mondal K, Szczupak J (1977) An alternate parallel realization of digital transfer functions. Proc IEEE (Lett) 65:577–578CrossRef Mitra SK, Mondal K, Szczupak J (1977) An alternate parallel realization of digital transfer functions. Proc IEEE (Lett) 65:577–578CrossRef
29.
go back to reference Rabiner LR, Crochiere RE (1975) A novel implementation for narrow-band FIR digital filters. IEEE Trans Acoust Speech Sig Process 23(5):457–464CrossRef Rabiner LR, Crochiere RE (1975) A novel implementation for narrow-band FIR digital filters. IEEE Trans Acoust Speech Sig Process 23(5):457–464CrossRef
30.
go back to reference Renner K, Gupta SC (1973) On the design of wave digital filters with low sensitivity properties. IEEE Trans Circ Theory CT-20:555–567CrossRef Renner K, Gupta SC (1973) On the design of wave digital filters with low sensitivity properties. IEEE Trans Circ Theory CT-20:555–567CrossRef
31.
go back to reference Sandberg IW (1967) Floating-point-roundoff accumulation in digital filter realization. Bell Syst Tech J 46:1775–1791CrossRef Sandberg IW (1967) Floating-point-roundoff accumulation in digital filter realization. Bell Syst Tech J 46:1775–1791CrossRef
32.
go back to reference Swamy MNS, Thyagarajan KS (1975) A new type of wave digital filter. J Frankl Inst 300(1):41–58CrossRef Swamy MNS, Thyagarajan KS (1975) A new type of wave digital filter. J Frankl Inst 300(1):41–58CrossRef
33.
go back to reference Szczupak J, Mitra SK (1975) Digital filter realization using successive multiplier – extraction approach. IEEE Trans Acoust Speech Sig Process ASSP-23:235–239CrossRef Szczupak J, Mitra SK (1975) Digital filter realization using successive multiplier – extraction approach. IEEE Trans Acoust Speech Sig Process ASSP-23:235–239CrossRef
34.
go back to reference Thyagarajan KS (1977) One and two-dimensional wave digital filters with low coefficient sensitivities. Ph.D. thesis, Concordia University, Montreal, Quebec, Canada Thyagarajan KS (1977) One and two-dimensional wave digital filters with low coefficient sensitivities. Ph.D. thesis, Concordia University, Montreal, Quebec, Canada
Metadata
Title
Digital Filter Structures
Author
K. S. Thyagarajan
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-76029-2_8