Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 11/2024

16-02-2022 | ORIGINAL ARTICLE

Digital twin-based dynamic prediction of thermomechanical coupling for skiving process

Authors: Lei Zhang, Jianhua Liu, Xiaoqiang Wu, Cunbo Zhuang

Published in: The International Journal of Advanced Manufacturing Technology | Issue 11/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Skiving has potential for gear machining, but its cutting force fluctuates greatly, its cutting temperature is high during processing, and it has the characteristics of thermomechanical coupling. It is difficult for traditional methods to dynamically predict the thermomechanical coupling during the skiving process, whose efficiency and stability cannot be guaranteed. Aiming to solve these problems, a digital twin (DT)-based dynamic method is proposed to predict thermomechanical coupling in the skiving process. Considering the time-varying characteristics and coupling of the cutting force and temperature, a multi-physical modeling method dual-driven by mechanism and data is proposed to establish a thermomechanical coupling DT (TMDT) model of the skiving process. The dynamic consistency of the skiving process between the digital and physical spaces is realized. Principal component analysis (PCA) and an extreme learning machine (ELM) are used to reduce the order of the TMDT, the reduced-order model is trained using the skiving big data, and a relationship mapping model of the cutting parameters and the cutting force and temperature is established to realize the dynamic prediction of the cutting force and temperature. The effectiveness of the proposed method is verified through gear skiving experiments. This research has important theoretical guiding significance to realize efficient and stable skiving processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Spath D, Huhsam A (2002) Skiving for high-performance machining of periodic structures. CIRP Ann 51:472–475CrossRef Spath D, Huhsam A (2002) Skiving for high-performance machining of periodic structures. CIRP Ann 51:472–475CrossRef
2.
go back to reference Klaus K (2013) Contemporary gear pre-machining solutions. Gear Solut 4:43–49 Klaus K (2013) Contemporary gear pre-machining solutions. Gear Solut 4:43–49
3.
go back to reference Tetsuji M, Toshimasa K, Chhara Y, Nakamura Y (2015) MHI super-skiving system for longer tool life and enhanced efficiency in internal gear cutting. Mitsubishi Heavy Ind Tech Rev 52:101–105 Tetsuji M, Toshimasa K, Chhara Y, Nakamura Y (2015) MHI super-skiving system for longer tool life and enhanced efficiency in internal gear cutting. Mitsubishi Heavy Ind Tech Rev 52:101–105
4.
go back to reference Li J, Wang P, Jin Y, Hu Q, Chen X (2016) Cutting force calculation for gear slicing with energy method. Int J Adv Manuf Technol 83:887–896CrossRef Li J, Wang P, Jin Y, Hu Q, Chen X (2016) Cutting force calculation for gear slicing with energy method. Int J Adv Manuf Technol 83:887–896CrossRef
5.
go back to reference Wu X, Li J, Jin Y, Zheng S (2020) Temperature calculation of the tool and chip in slicing process with equal-rake angle arc-tooth slice tool. Mech Syst Signal Process 143:106793 Wu X, Li J, Jin Y, Zheng S (2020) Temperature calculation of the tool and chip in slicing process with equal-rake angle arc-tooth slice tool. Mech Syst Signal Process 143:106793
6.
go back to reference Zhuang C, Liu J, Xiong H (2018) DT-based smart production management and control framework for the complex product assembly shop-floor. Int J Adv Manuf Technol 96:1149–1163CrossRef Zhuang C, Liu J, Xiong H (2018) DT-based smart production management and control framework for the complex product assembly shop-floor. Int J Adv Manuf Technol 96:1149–1163CrossRef
7.
go back to reference Chen J, Yang J, Zhou H et al (2015) CPS modeling of CNC machine tool work processes using an instruction-domain based approach. Engineering 1:247–260CrossRef Chen J, Yang J, Zhou H et al (2015) CPS modeling of CNC machine tool work processes using an instruction-domain based approach. Engineering 1:247–260CrossRef
8.
go back to reference Angrish A, Starly B, Lee Y, Cohen P (2017) A flexible data schema and system architecture for the virtualization of manufacturing machines (VMM). J Manuf Syst 45:236–247CrossRef Angrish A, Starly B, Lee Y, Cohen P (2017) A flexible data schema and system architecture for the virtualization of manufacturing machines (VMM). J Manuf Syst 45:236–247CrossRef
9.
go back to reference Liu C, Vengayil H, Zhong R, Xu X (2018) A systematic development method for cyber-physical machine tools. J Manuf Syst 48:13–24CrossRef Liu C, Vengayil H, Zhong R, Xu X (2018) A systematic development method for cyber-physical machine tools. J Manuf Syst 48:13–24CrossRef
10.
go back to reference Tong X, Liu Q, Pi S, Xiao Y (2020) Real-time machining data application and service based on IMT digital twin. J Intell Manuf 31:1113–1132CrossRef Tong X, Liu Q, Pi S, Xiao Y (2020) Real-time machining data application and service based on IMT digital twin. J Intell Manuf 31:1113–1132CrossRef
11.
go back to reference Hartmut M, Olaf V (2012) Robust method for skiving and corresponding apparatus comprising a skiving tool. US Patent 20120328384A1 Hartmut M, Olaf V (2012) Robust method for skiving and corresponding apparatus comprising a skiving tool. US Patent 20120328384A1
12.
go back to reference Chen X, Li J, Lou B (2013) A study on the design of error-free spur slice cutter. Int J Adv Manuf Technol 68:727–738CrossRef Chen X, Li J, Lou B (2013) A study on the design of error-free spur slice cutter. Int J Adv Manuf Technol 68:727–738CrossRef
13.
go back to reference Guo E, Hong R, Huang X, Fang C (2014) Research on the design of skiving tool for machining involute gears. J Mech Sci Technol 28:5107–5115CrossRef Guo E, Hong R, Huang X, Fang C (2014) Research on the design of skiving tool for machining involute gears. J Mech Sci Technol 28:5107–5115CrossRef
14.
go back to reference Guo E, Hong R, Huang X, Fang C (2016) A novel power skiving method using the common shaper cutter. Int J Adv Manuf Technol 83:157–165CrossRef Guo E, Hong R, Huang X, Fang C (2016) A novel power skiving method using the common shaper cutter. Int J Adv Manuf Technol 83:157–165CrossRef
15.
go back to reference Guo Z, Mao S, Li X, Ren Z (2016) Research on the theoretical tooth profile errors of gears machined by skiving. Mech Mach Theory 97:1–11CrossRef Guo Z, Mao S, Li X, Ren Z (2016) Research on the theoretical tooth profile errors of gears machined by skiving. Mech Mach Theory 97:1–11CrossRef
16.
go back to reference Moriwaki I, Osafune T, Nakamura M, Funamoto M, Uriu K (2017) Cutting tool parameters of cylindrical skiving cutter with sharpening angle for internal gears. J Mech Design 139:033301-1-033301–11CrossRef Moriwaki I, Osafune T, Nakamura M, Funamoto M, Uriu K (2017) Cutting tool parameters of cylindrical skiving cutter with sharpening angle for internal gears. J Mech Design 139:033301-1-033301–11CrossRef
17.
go back to reference Volker S, Chirsttoph K, Hermann A (2011) 3D-FEM modeling of gear skiving to investigate kinematics and chip formation mechanisms. Adv Mater Res 223:46–55CrossRef Volker S, Chirsttoph K, Hermann A (2011) 3D-FEM modeling of gear skiving to investigate kinematics and chip formation mechanisms. Adv Mater Res 223:46–55CrossRef
18.
go back to reference Mcloskey P, Katz A, Berglind L, Erkorkmaz K, Ozturk E, Ismail F (2019) Chip geometry and cutting forces in gear power skiving. CIRP Ann 68:109–112CrossRef Mcloskey P, Katz A, Berglind L, Erkorkmaz K, Ozturk E, Ismail F (2019) Chip geometry and cutting forces in gear power skiving. CIRP Ann 68:109–112CrossRef
19.
go back to reference Onozuka H, Tayama F, Huang Y, Inuib M (2020) Cutting force model for power skiving of internal gear. J Manuf Process 56:1277–1285CrossRef Onozuka H, Tayama F, Huang Y, Inuib M (2020) Cutting force model for power skiving of internal gear. J Manuf Process 56:1277–1285CrossRef
20.
go back to reference Vargas B, Zapf M, Klose J, Zanger F, Schulze V (2019) Numerical modeling of cutting forces in gear skiving. Proc CIRP 82:455–460CrossRef Vargas B, Zapf M, Klose J, Zanger F, Schulze V (2019) Numerical modeling of cutting forces in gear skiving. Proc CIRP 82:455–460CrossRef
21.
go back to reference Guo Z, Mao S, Huyan L, Duan D (2018) Research and improvement of the cutting performance of skiving tool. Mech Mach Theory 120:302–313CrossRef Guo Z, Mao S, Huyan L, Duan D (2018) Research and improvement of the cutting performance of skiving tool. Mech Mach Theory 120:302–313CrossRef
22.
go back to reference Tao F, Liu W, Liu J et al (2018) Digital twin and its potential application exploration. Comput Integr Manuf Syst 24:1–18 Tao F, Liu W, Liu J et al (2018) Digital twin and its potential application exploration. Comput Integr Manuf Syst 24:1–18
23.
go back to reference Liu S, Bao J, Lu Y, Li J, Lu S, Sun X (2021) Digital twin modeling method based on biomimicry for machining aerospace components. J Manuf Syst 58:180–195CrossRef Liu S, Bao J, Lu Y, Li J, Lu S, Sun X (2021) Digital twin modeling method based on biomimicry for machining aerospace components. J Manuf Syst 58:180–195CrossRef
24.
go back to reference Cai Y, Starly B, Cohen P, Lee Y (2017) Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Proce Manuf 10:1031–1042 Cai Y, Starly B, Cohen P, Lee Y (2017) Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Proce Manuf 10:1031–1042
25.
go back to reference Altintas Y, Aslan D (2017) Integration of virtual and on-line machining process control and monitoring. CIRP Ann - Manuf Technol 66:349–352CrossRef Altintas Y, Aslan D (2017) Integration of virtual and on-line machining process control and monitoring. CIRP Ann - Manuf Technol 66:349–352CrossRef
26.
go back to reference Hu T, Luo W, Tao F, Zhang C (2018) A digital twin modeling method for CNC machine tools. ChinesePatent CN201711434013.X Hu T, Luo W, Tao F, Zhang C (2018) A digital twin modeling method for CNC machine tools. ChinesePatent CN201711434013.X
27.
go back to reference Armendia M, Cugnon F, Berglind L, Ozturk E, Gil G, Selmi J (2019) Evaluation of Machine Tool Digital Twin for machining operations in industrial environment. Proce CIRP 82:231–236CrossRef Armendia M, Cugnon F, Berglind L, Ozturk E, Gil G, Selmi J (2019) Evaluation of Machine Tool Digital Twin for machining operations in industrial environment. Proce CIRP 82:231–236CrossRef
28.
go back to reference Wang C, Erkorkmaz K, McPhee J, Engin S (2020) In-process digital twin estimation for high-performance machine tools with coupled multibody dynamics. CIRP Ann - Manuf Technol 69:321–324CrossRef Wang C, Erkorkmaz K, McPhee J, Engin S (2020) In-process digital twin estimation for high-performance machine tools with coupled multibody dynamics. CIRP Ann - Manuf Technol 69:321–324CrossRef
29.
go back to reference Jiang Y, Chen J, Zhou H, Yang J, Xu G (2021) Residual learning of the dynamics model for feeding system modelling based on dynamic nonlinear correlate factor analysis. Appl Intell 51:5067–5080CrossRef Jiang Y, Chen J, Zhou H, Yang J, Xu G (2021) Residual learning of the dynamics model for feeding system modelling based on dynamic nonlinear correlate factor analysis. Appl Intell 51:5067–5080CrossRef
30.
go back to reference Wei Y, Hu T, Zhou T, Ye Y, Luo W (2021) Consistency retention method for CNC machine tool digital twin model. J Manuf Syst 58:313–322CrossRef Wei Y, Hu T, Zhou T, Ye Y, Luo W (2021) Consistency retention method for CNC machine tool digital twin model. J Manuf Syst 58:313–322CrossRef
31.
go back to reference Chakraborty S, Adhikari S, Ganguli R (2021) The role of surrogate models in the development of digital twins of dynamic systems. Appl Math Model 90:662–681MathSciNetCrossRef Chakraborty S, Adhikari S, Ganguli R (2021) The role of surrogate models in the development of digital twins of dynamic systems. Appl Math Model 90:662–681MathSciNetCrossRef
32.
go back to reference Erkoyuncu J, Amo I, Ariansyah D, Bulka D, Vrabic R, Roy R (2020) A design framework for adaptive digital twins. CIRP Ann - Manuf Technol 69:145–148CrossRef Erkoyuncu J, Amo I, Ariansyah D, Bulka D, Vrabic R, Roy R (2020) A design framework for adaptive digital twins. CIRP Ann - Manuf Technol 69:145–148CrossRef
33.
go back to reference Ritto T, Rochinha F (2021) Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech Syst Signal Process 155:107614 Ritto T, Rochinha F (2021) Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech Syst Signal Process 155:107614
34.
go back to reference Williams C, Rasmussen C (2006) Gaussian processes for machine learning. MIT press, Cambridge, MA Williams C, Rasmussen C (2006) Gaussian processes for machine learning. MIT press, Cambridge, MA
Metadata
Title
Digital twin-based dynamic prediction of thermomechanical coupling for skiving process
Authors
Lei Zhang
Jianhua Liu
Xiaoqiang Wu
Cunbo Zhuang
Publication date
16-02-2022
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 11/2024
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-08908-8

Other articles of this Issue 11/2024

The International Journal of Advanced Manufacturing Technology 11/2024 Go to the issue

Premium Partners