Skip to main content
Top
Published in: Microsystem Technologies 8/2017

08-06-2016 | Technical Paper

Dimensionless model for impedimetric sensing of particle laden droplets in digital microfluidic devices

Authors: Emrys Scott-Murrell, David Lanza, Michael J. Schertzer

Published in: Microsystem Technologies | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microfluidic lab-on-a-chip (LOC) devices miniaturize and automate biological protocols while reducing labor and equipment costs. An automated LOC can be used by operators with little training, provided the device incorporates real-time autonomous feedback to the user. Digital microfluidic (DMF) devices are a LOC platform that can create, move, merge, and mix discrete droplets of fluid through the application of asymmetric electric fields. The geometry of DMF devices also allows for integration of real-time impedimetric feedback without integration of additional sensing components. This investigation presents an analytical model for impedimetric sensing of particle laden droplets in DMF devices. The proposed model is based on an equivalent circuit that contains particles of a general size and vertical distribution. Since the proposed model provides an analytical formulation, it can be used to identify dimensionless parameters that govern the impedimetric response of the system. These parameters include: measurement frequency, local area fraction, dimensionless particle size, and the ratios of electrical properties of the particles and the surrounding fluid. The model was used to predict impedimetric response of particle laden droplets in DMF devices. Impedance increased monotonically with volume fraction regardless of particle orientation. This increase was more rapid for horizontally distributed particles than vertically distributed particles. The model also predicts that particle concentration and measurement frequency can be used to independently control sensitivity and saturation of the impedance measurements to changes in electrical properties of the fluid that may occur due to chemical reactions in the droplet.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arora P, Vasa P, Brenner D et al (2013) Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey. CMAJ 185:E417–E423. doi:10.1503/cmaj.120833 CrossRef Arora P, Vasa P, Brenner D et al (2013) Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey. CMAJ 185:E417–E423. doi:10.​1503/​cmaj.​120833 CrossRef
go back to reference Chatterjee D, Hetayothin B, Wheeler AR et al (2006) Droplet-based microfluidics with nonaqueous solvents and solutions. Lab Chip 6:199–206CrossRef Chatterjee D, Hetayothin B, Wheeler AR et al (2006) Droplet-based microfluidics with nonaqueous solvents and solutions. Lab Chip 6:199–206CrossRef
go back to reference Chen C-H, Tsai S-L, Chen M-K, Jang L-S (2011) Effects of gap height, applied frequency, and fluid conductivity on minimum actuation voltage of electrowetting-on-dielectric and liquid dielectrophoresis. Sens Actuators B Chem 159:321–327CrossRef Chen C-H, Tsai S-L, Chen M-K, Jang L-S (2011) Effects of gap height, applied frequency, and fluid conductivity on minimum actuation voltage of electrowetting-on-dielectric and liquid dielectrophoresis. Sens Actuators B Chem 159:321–327CrossRef
go back to reference Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80CrossRef Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80CrossRef
go back to reference Endo T, Okuyama A, Matsubara Y et al (2005) Fluorescence-based assay with enzyme amplification on a micro-flow immunosensor chip for monitoring coplanar polychlorinated biphenyls. Anal Chim Acta 531:7CrossRef Endo T, Okuyama A, Matsubara Y et al (2005) Fluorescence-based assay with enzyme amplification on a micro-flow immunosensor chip for monitoring coplanar polychlorinated biphenyls. Anal Chim Acta 531:7CrossRef
go back to reference Gong J, Kim C-JCJ (2008) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8:898–906CrossRef Gong J, Kim C-JCJ (2008) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8:898–906CrossRef
go back to reference Hung P-Y, Jiang P-S, Lee E-F et al (2015) Genomic DNA extraction from whole blood using a digital microfluidic (DMF) platform with magnetic beads. Microsyst Technol. doi:10.1007/s00542-015-2512-9 Hung P-Y, Jiang P-S, Lee E-F et al (2015) Genomic DNA extraction from whole blood using a digital microfluidic (DMF) platform with magnetic beads. Microsyst Technol. doi:10.​1007/​s00542-015-2512-9
go back to reference Issadore D, Westervelt RM (2013) Point of care diagnostics on chip, 1st edn. Springer, Berlin, Heidelberg, New YorkCrossRef Issadore D, Westervelt RM (2013) Point of care diagnostics on chip, 1st edn. Springer, Berlin, Heidelberg, New YorkCrossRef
go back to reference Jain V, Raj TP, Deshmukh R, Patrikar R (2015) Design, fabrication and characterization of low cost printed circuit board based EWOD device for digital microfluidics applications. Microsyst Technol. doi:10.1007/s00542-015-2680-7 Jain V, Raj TP, Deshmukh R, Patrikar R (2015) Design, fabrication and characterization of low cost printed circuit board based EWOD device for digital microfluidics applications. Microsyst Technol. doi:10.​1007/​s00542-015-2680-7
go back to reference Lee SJ, Lee SY (2004) Micro total analysis system (µ-TAS) in biotechnology. Appl Microbiol Biotechnol 64:289CrossRef Lee SJ, Lee SY (2004) Micro total analysis system (µ-TAS) in biotechnology. Appl Microbiol Biotechnol 64:289CrossRef
go back to reference Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sens J 8:628–635CrossRef Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sens J 8:628–635CrossRef
go back to reference Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80:1614–1619CrossRef Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80:1614–1619CrossRef
go back to reference Nelson WC, Kim CCJ (2012) Actuation by electrowetting-on-dielectric (EWOD): a review. J Adhes Sci Droplet 26:1747–1771 Nelson WC, Kim CCJ (2012) Actuation by electrowetting-on-dielectric (EWOD): a review. J Adhes Sci Droplet 26:1747–1771
go back to reference Ng AHC, Choi K, Luoma RP et al (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84:8805–8812CrossRef Ng AHC, Choi K, Luoma RP et al (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84:8805–8812CrossRef
go back to reference Ng AHC, Choi K, Luoma RP et al (2013) Digital Micro fluidic magnetic separation for particle-based immunoassays. Appl Phys Lett 102:193513CrossRef Ng AHC, Choi K, Luoma RP et al (2013) Digital Micro fluidic magnetic separation for particle-based immunoassays. Appl Phys Lett 102:193513CrossRef
go back to reference Pollack MG, Fair RB (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726CrossRef Pollack MG, Fair RB (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726CrossRef
go back to reference Ren H, Fair RB, Pollack MG (2004) Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering. Sens Actuators B Chem 98:319–327CrossRef Ren H, Fair RB, Pollack MG (2004) Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering. Sens Actuators B Chem 98:319–327CrossRef
go back to reference Sadeghi S, Ding H, Shah GJ et al (2012) On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics. Anal Chem 84:1915–1923. doi:10.1021/ac202715f CrossRef Sadeghi S, Ding H, Shah GJ et al (2012) On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics. Anal Chem 84:1915–1923. doi:10.​1021/​ac202715f CrossRef
go back to reference Satoh W, Hosono H, Suzuki H (2005) On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions. Anal Chem 77:6857–6863CrossRef Satoh W, Hosono H, Suzuki H (2005) On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions. Anal Chem 77:6857–6863CrossRef
go back to reference Schertzer MJ, Ben-Mrad R, Sullivan PE (2010a) Using capacitance measurements in EWOD devices to identify fluid composition and control droplet mixing. Sens Actuators B Chem 145:340–347CrossRef Schertzer MJ, Ben-Mrad R, Sullivan PE (2010a) Using capacitance measurements in EWOD devices to identify fluid composition and control droplet mixing. Sens Actuators B Chem 145:340–347CrossRef
go back to reference Schertzer MJ, Gubarenko SI, Ben-Mrad R, Sullivan PE (2010b) An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices. Langmuir 26:19230–19238CrossRef Schertzer MJ, Gubarenko SI, Ben-Mrad R, Sullivan PE (2010b) An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices. Langmuir 26:19230–19238CrossRef
go back to reference Shen NY, Liu Z, Jacquot BC et al (2004) Integration of chemical sensing and electrowetting actuation on chemoreceptive neuron MOS (CνMOS) transistors. Sens Actuators B Chem 102:35–43CrossRef Shen NY, Liu Z, Jacquot BC et al (2004) Integration of chemical sensing and electrowetting actuation on chemoreceptive neuron MOS (CνMOS) transistors. Sens Actuators B Chem 102:35–43CrossRef
go back to reference Sista R, Hua Z, Thwar P et al (2008a) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104CrossRef Sista R, Hua Z, Thwar P et al (2008a) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104CrossRef
go back to reference Sista RS, Eckhardt AE, Srinivasan V et al (2008b) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8:2188–2196CrossRef Sista RS, Eckhardt AE, Srinivasan V et al (2008b) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8:2188–2196CrossRef
go back to reference Su F, Ozev S, Chakrabarty K (2004) Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays. In: 2004 International Conferce on Testing. IEEE, pp 883–892 Su F, Ozev S, Chakrabarty K (2004) Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays. In: 2004 International Conferce on Testing. IEEE, pp 883–892
go back to reference Su F, Ozev S, Chakrabarty K (2005) Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE Sens J 5:763–773CrossRef Su F, Ozev S, Chakrabarty K (2005) Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE Sens J 5:763–773CrossRef
go back to reference Suh KS, Park SW, Castro A et al (2010) Ovarian cancer biomarkers for molecular biosensors and translational medicine. Expert Rev Mol Diagn 10:1069–1083CrossRef Suh KS, Park SW, Castro A et al (2010) Ovarian cancer biomarkers for molecular biosensors and translational medicine. Expert Rev Mol Diagn 10:1069–1083CrossRef
go back to reference Washizu M (1998) Electrostatic actuation of liquid droplets for microreactor applications. In: IEEE transactions on industry applications, pp 732–737 Washizu M (1998) Electrostatic actuation of liquid droplets for microreactor applications. In: IEEE transactions on industry applications, pp 732–737
Metadata
Title
Dimensionless model for impedimetric sensing of particle laden droplets in digital microfluidic devices
Authors
Emrys Scott-Murrell
David Lanza
Michael J. Schertzer
Publication date
08-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 8/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3011-3

Other articles of this Issue 8/2017

Microsystem Technologies 8/2017 Go to the issue