Skip to main content
Top
Published in: Calcolo 2/2024

01-06-2024

Discrete projection methods for Fredholm–Hammerstein integral equations using Kumar and Sloan technique

Authors: Ritu Nigam, Nilofar Nahid, Samiran Chakraborty, Gnaneshwar Nelakanti

Published in: Calcolo | Issue 2/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The proposed work discusses discrete collocation and discrete Galerkin methods for second kind Fredholm–Hammerstein integral equations on half line \([0,\infty )\) using Kumar and Sloan technique. In addition, the finite section approximation method is applied to transform the domain of integration from \([0, \infty )\) to \([0,\alpha ],~ \alpha >0\). In contrast to previous studies in which the optimal order of convergence is achieved for projection methods, we attained superconvergence rates in uniform norm using piecewise polynomial basis function. Moreover, these superconvergence rates are further enhanced by using discrete multi-projection (collocation and Galerkin) methods. In order to support the provided theoretical framework, numerical examples are included as well.
Literature
1.
go back to reference Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. Chapman and Hall/CRC, Boca Raton (2001)CrossRef Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. Chapman and Hall/CRC, Boca Raton (2001)CrossRef
2.
go back to reference Amini, S., Sloan, I.H.: Collocation methods for second kind integral equations with non-compact operators. J. Integral Equ. Appl. 2(1), 1–30 (1989)CrossRef Amini, S., Sloan, I.H.: Collocation methods for second kind integral equations with non-compact operators. J. Integral Equ. Appl. 2(1), 1–30 (1989)CrossRef
3.
go back to reference Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line. Numer. Math. 51(6), 599–614 (1987)MathSciNetCrossRef Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line. Numer. Math. 51(6), 599–614 (1987)MathSciNetCrossRef
4.
go back to reference Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line II. The Wiener–Hopf case. J. Integral Equ. Appl. 1(2), 203–225 (1988)MathSciNetCrossRef Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line II. The Wiener–Hopf case. J. Integral Equ. Appl. 1(2), 203–225 (1988)MathSciNetCrossRef
5.
go back to reference Anselone, P.M., Lee, J.W.: Nonlinear integral equations on the half line. J. Integral Equ. Appl. 4(1), 1–14 (1992)MathSciNet Anselone, P.M., Lee, J.W.: Nonlinear integral equations on the half line. J. Integral Equ. Appl. 4(1), 1–14 (1992)MathSciNet
6.
go back to reference Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1, 17–54 (1988)MathSciNet Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1, 17–54 (1988)MathSciNet
7.
go back to reference Atkinson, K., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13(2), 195–213 (1993)MathSciNetCrossRef Atkinson, K., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13(2), 195–213 (1993)MathSciNetCrossRef
8.
go back to reference Atkinson, K.: The numerical solution of integral equations on the half-line. SIAM J. Numer. Anal. 6(3), 375–397 (1969)MathSciNetCrossRef Atkinson, K.: The numerical solution of integral equations on the half-line. SIAM J. Numer. Anal. 6(3), 375–397 (1969)MathSciNetCrossRef
9.
go back to reference Assari, P.: A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique. J. Appl. Anal. Comput. 9(1), 75–104 (2019)MathSciNet Assari, P.: A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique. J. Appl. Anal. Comput. 9(1), 75–104 (2019)MathSciNet
10.
go back to reference Assari, P.: Thin plate spline Galerkin scheme for numerically solving nonlinear weakly singular Fredholm integral equations. Appl. Anal. 98(11), 2064–2084 (2019)MathSciNetCrossRef Assari, P.: Thin plate spline Galerkin scheme for numerically solving nonlinear weakly singular Fredholm integral equations. Appl. Anal. 98(11), 2064–2084 (2019)MathSciNetCrossRef
11.
go back to reference Assari, P., Asadi-Mehregan, F.: Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int. J. Numer. Model. Electro. Netw. Devices Fields 2(1), e2488 (2019)CrossRef Assari, P., Asadi-Mehregan, F.: Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int. J. Numer. Model. Electro. Netw. Devices Fields 2(1), e2488 (2019)CrossRef
12.
go back to reference Chen, Z., Xu, Y., Zhao, J.: The discrete Petrov–Galerkin method for weakly singular integral equations. J. Integral Equ. Appl. 11(1), 1–35 (1999)MathSciNetCrossRef Chen, Z., Xu, Y., Zhao, J.: The discrete Petrov–Galerkin method for weakly singular integral equations. J. Integral Equ. Appl. 11(1), 1–35 (1999)MathSciNetCrossRef
13.
go back to reference Das, P., Nelakanti, G.: Error analysis of discrete Legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38(5), 549–574 (2017)MathSciNetCrossRef Das, P., Nelakanti, G.: Error analysis of discrete Legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38(5), 549–574 (2017)MathSciNetCrossRef
14.
go back to reference Das, P., Nelakanti, G., Long, G.: Discrete Legendre spectral Galerkin method for Urysohn integral equations. Int. J. Comput. Math. 95(3), 465–489 (2018)MathSciNetCrossRef Das, P., Nelakanti, G., Long, G.: Discrete Legendre spectral Galerkin method for Urysohn integral equations. Int. J. Comput. Math. 95(3), 465–489 (2018)MathSciNetCrossRef
15.
go back to reference Eggermont, P.P.B.: On noncompact Hammerstein integral equations and a nonlinear boundary value problem for the heat equation. J. Integral Equ. Appl. 4(1), 47–68 (1992)MathSciNetCrossRef Eggermont, P.P.B.: On noncompact Hammerstein integral equations and a nonlinear boundary value problem for the heat equation. J. Integral Equ. Appl. 4(1), 47–68 (1992)MathSciNetCrossRef
16.
go back to reference Ganesh, M., Joshi, M.C.: Numerical solutions of nonlinear integral equations on the half line. Numer. Funct. Anal. Optim. 10(11–12), 1115–1138 (1989)MathSciNetCrossRef Ganesh, M., Joshi, M.C.: Numerical solutions of nonlinear integral equations on the half line. Numer. Funct. Anal. Optim. 10(11–12), 1115–1138 (1989)MathSciNetCrossRef
17.
go back to reference Golberg, M.A., Chen, C.S., Fromme, J.A.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997) Golberg, M.A., Chen, C.S., Fromme, J.A.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997)
18.
go back to reference Golberg, M., Bowman, H.: Optimal convergence rates for some discrete projection methods. Appl. Math. Comput. 96(2–3), 237–271 (1998)MathSciNet Golberg, M., Bowman, H.: Optimal convergence rates for some discrete projection methods. Appl. Math. Comput. 96(2–3), 237–271 (1998)MathSciNet
19.
go back to reference Graham, I.G., Mendes, W.R.: Nystrom-product integration for Wiener–Hopf equations with applications to radiative transfer. IMA J. Numer. Anal. 9(2), 261–284 (1989)MathSciNetCrossRef Graham, I.G., Mendes, W.R.: Nystrom-product integration for Wiener–Hopf equations with applications to radiative transfer. IMA J. Numer. Anal. 9(2), 261–284 (1989)MathSciNetCrossRef
20.
go back to reference Khachatryan, A.K., Khachatryan, K.A.: Hammerstein–Nemytskii type nonlinear integral equations on half-line in space \( L_1 (0,+\infty )\cap L_ {\infty }(0,+\infty ) \). Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica. 52(1), 89–100 (2013)MathSciNet Khachatryan, A.K., Khachatryan, K.A.: Hammerstein–Nemytskii type nonlinear integral equations on half-line in space \( L_1 (0,+\infty )\cap L_ {\infty }(0,+\infty ) \). Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica. 52(1), 89–100 (2013)MathSciNet
21.
go back to reference Kumar, S., Sloan, I.H.: A new collocation-type method for Hammerstein integral equations. Math. Comput. 48(178), 585–593 (1987)MathSciNetCrossRef Kumar, S., Sloan, I.H.: A new collocation-type method for Hammerstein integral equations. Math. Comput. 48(178), 585–593 (1987)MathSciNetCrossRef
22.
go back to reference Long, G., Nelakanti, G., Panigrahi, B.L., Sahani, M.M.: Discrete multi-projection methods for eigen-problems of compact integral operators. Appl. Math. Comput. 217(8), 3974–3984 (2010)MathSciNet Long, G., Nelakanti, G., Panigrahi, B.L., Sahani, M.M.: Discrete multi-projection methods for eigen-problems of compact integral operators. Appl. Math. Comput. 217(8), 3974–3984 (2010)MathSciNet
23.
go back to reference Nahid, N., Nelakanti, G.: Discrete projection methods for Hammerstein integral equations on the half-line. Calcolo 57(4), 1–42 (2020)MathSciNetCrossRef Nahid, N., Nelakanti, G.: Discrete projection methods for Hammerstein integral equations on the half-line. Calcolo 57(4), 1–42 (2020)MathSciNetCrossRef
24.
go back to reference Nahid, N., Das, P., Nelakanti, G.: Projection and multi projection methods for nonlinear integral equations on the half-line. J. Comput. Appl. Math. 359, 119–144 (2019)MathSciNetCrossRef Nahid, N., Das, P., Nelakanti, G.: Projection and multi projection methods for nonlinear integral equations on the half-line. J. Comput. Appl. Math. 359, 119–144 (2019)MathSciNetCrossRef
25.
go back to reference Nigam, R., Nahid, N., Chakraborty, S., Nelakanti, G.: Superconvergence results for non-linear Hammerstein integral equations on unbounded domain. Numer. Algorithms 94, 1243–1279 (2023)MathSciNetCrossRef Nigam, R., Nahid, N., Chakraborty, S., Nelakanti, G.: Superconvergence results for non-linear Hammerstein integral equations on unbounded domain. Numer. Algorithms 94, 1243–1279 (2023)MathSciNetCrossRef
26.
go back to reference Rahmoune, A.: On the numerical solution of integral equations of the second kind over infinite intervals. J. Appl. Math. Comput. 66(1–2), 129–148 (2021)MathSciNetCrossRef Rahmoune, A.: On the numerical solution of integral equations of the second kind over infinite intervals. J. Appl. Math. Comput. 66(1–2), 129–148 (2021)MathSciNetCrossRef
27.
go back to reference Rahmoune, A.: Spectral collocation method for solving Fredholm integral equations on the half-line. Appl. Math. Comput. 219(17), 9254–9260 (2013)MathSciNet Rahmoune, A.: Spectral collocation method for solving Fredholm integral equations on the half-line. Appl. Math. Comput. 219(17), 9254–9260 (2013)MathSciNet
28.
go back to reference Remili, W., Rahmoune, A.: Modified Legendre rational and exponential collocation methods for solving nonlinear Hammerstein integral equations on the semi-infinite domain. Int. J. Comput. Math. 99(10), 2018–2041 (2022)MathSciNetCrossRef Remili, W., Rahmoune, A.: Modified Legendre rational and exponential collocation methods for solving nonlinear Hammerstein integral equations on the semi-infinite domain. Int. J. Comput. Math. 99(10), 2018–2041 (2022)MathSciNetCrossRef
29.
go back to reference Schumaker, L.: Spline Functions: Basic Theory. Cambridge University Press, Cambridge (2007)CrossRef Schumaker, L.: Spline Functions: Basic Theory. Cambridge University Press, Cambridge (2007)CrossRef
30.
go back to reference Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods for non-linear equations. USSR Comput. Math. Math. Phys. 7(4), 1–41 (1967)CrossRef Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods for non-linear equations. USSR Comput. Math. Math. Phys. 7(4), 1–41 (1967)CrossRef
Metadata
Title
Discrete projection methods for Fredholm–Hammerstein integral equations using Kumar and Sloan technique
Authors
Ritu Nigam
Nilofar Nahid
Samiran Chakraborty
Gnaneshwar Nelakanti
Publication date
01-06-2024
Publisher
Springer International Publishing
Published in
Calcolo / Issue 2/2024
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-024-00573-5

Other articles of this Issue 2/2024

Calcolo 2/2024 Go to the issue

Premium Partner