Skip to main content
Erschienen in: Calcolo 2/2024

01.06.2024

Discrete projection methods for Fredholm–Hammerstein integral equations using Kumar and Sloan technique

verfasst von: Ritu Nigam, Nilofar Nahid, Samiran Chakraborty, Gnaneshwar Nelakanti

Erschienen in: Calcolo | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The proposed work discusses discrete collocation and discrete Galerkin methods for second kind Fredholm–Hammerstein integral equations on half line \([0,\infty )\) using Kumar and Sloan technique. In addition, the finite section approximation method is applied to transform the domain of integration from \([0, \infty )\) to \([0,\alpha ],~ \alpha >0\). In contrast to previous studies in which the optimal order of convergence is achieved for projection methods, we attained superconvergence rates in uniform norm using piecewise polynomial basis function. Moreover, these superconvergence rates are further enhanced by using discrete multi-projection (collocation and Galerkin) methods. In order to support the provided theoretical framework, numerical examples are included as well.
Literatur
1.
Zurück zum Zitat Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. Chapman and Hall/CRC, Boca Raton (2001)CrossRef Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. Chapman and Hall/CRC, Boca Raton (2001)CrossRef
2.
Zurück zum Zitat Amini, S., Sloan, I.H.: Collocation methods for second kind integral equations with non-compact operators. J. Integral Equ. Appl. 2(1), 1–30 (1989)CrossRef Amini, S., Sloan, I.H.: Collocation methods for second kind integral equations with non-compact operators. J. Integral Equ. Appl. 2(1), 1–30 (1989)CrossRef
3.
Zurück zum Zitat Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line. Numer. Math. 51(6), 599–614 (1987)MathSciNetCrossRef Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line. Numer. Math. 51(6), 599–614 (1987)MathSciNetCrossRef
4.
Zurück zum Zitat Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line II. The Wiener–Hopf case. J. Integral Equ. Appl. 1(2), 203–225 (1988)MathSciNetCrossRef Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line II. The Wiener–Hopf case. J. Integral Equ. Appl. 1(2), 203–225 (1988)MathSciNetCrossRef
5.
Zurück zum Zitat Anselone, P.M., Lee, J.W.: Nonlinear integral equations on the half line. J. Integral Equ. Appl. 4(1), 1–14 (1992)MathSciNet Anselone, P.M., Lee, J.W.: Nonlinear integral equations on the half line. J. Integral Equ. Appl. 4(1), 1–14 (1992)MathSciNet
6.
Zurück zum Zitat Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1, 17–54 (1988)MathSciNet Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1, 17–54 (1988)MathSciNet
7.
Zurück zum Zitat Atkinson, K., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13(2), 195–213 (1993)MathSciNetCrossRef Atkinson, K., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13(2), 195–213 (1993)MathSciNetCrossRef
8.
Zurück zum Zitat Atkinson, K.: The numerical solution of integral equations on the half-line. SIAM J. Numer. Anal. 6(3), 375–397 (1969)MathSciNetCrossRef Atkinson, K.: The numerical solution of integral equations on the half-line. SIAM J. Numer. Anal. 6(3), 375–397 (1969)MathSciNetCrossRef
9.
Zurück zum Zitat Assari, P.: A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique. J. Appl. Anal. Comput. 9(1), 75–104 (2019)MathSciNet Assari, P.: A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique. J. Appl. Anal. Comput. 9(1), 75–104 (2019)MathSciNet
10.
Zurück zum Zitat Assari, P.: Thin plate spline Galerkin scheme for numerically solving nonlinear weakly singular Fredholm integral equations. Appl. Anal. 98(11), 2064–2084 (2019)MathSciNetCrossRef Assari, P.: Thin plate spline Galerkin scheme for numerically solving nonlinear weakly singular Fredholm integral equations. Appl. Anal. 98(11), 2064–2084 (2019)MathSciNetCrossRef
11.
Zurück zum Zitat Assari, P., Asadi-Mehregan, F.: Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int. J. Numer. Model. Electro. Netw. Devices Fields 2(1), e2488 (2019)CrossRef Assari, P., Asadi-Mehregan, F.: Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int. J. Numer. Model. Electro. Netw. Devices Fields 2(1), e2488 (2019)CrossRef
12.
Zurück zum Zitat Chen, Z., Xu, Y., Zhao, J.: The discrete Petrov–Galerkin method for weakly singular integral equations. J. Integral Equ. Appl. 11(1), 1–35 (1999)MathSciNetCrossRef Chen, Z., Xu, Y., Zhao, J.: The discrete Petrov–Galerkin method for weakly singular integral equations. J. Integral Equ. Appl. 11(1), 1–35 (1999)MathSciNetCrossRef
13.
Zurück zum Zitat Das, P., Nelakanti, G.: Error analysis of discrete Legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38(5), 549–574 (2017)MathSciNetCrossRef Das, P., Nelakanti, G.: Error analysis of discrete Legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38(5), 549–574 (2017)MathSciNetCrossRef
14.
Zurück zum Zitat Das, P., Nelakanti, G., Long, G.: Discrete Legendre spectral Galerkin method for Urysohn integral equations. Int. J. Comput. Math. 95(3), 465–489 (2018)MathSciNetCrossRef Das, P., Nelakanti, G., Long, G.: Discrete Legendre spectral Galerkin method for Urysohn integral equations. Int. J. Comput. Math. 95(3), 465–489 (2018)MathSciNetCrossRef
15.
Zurück zum Zitat Eggermont, P.P.B.: On noncompact Hammerstein integral equations and a nonlinear boundary value problem for the heat equation. J. Integral Equ. Appl. 4(1), 47–68 (1992)MathSciNetCrossRef Eggermont, P.P.B.: On noncompact Hammerstein integral equations and a nonlinear boundary value problem for the heat equation. J. Integral Equ. Appl. 4(1), 47–68 (1992)MathSciNetCrossRef
16.
Zurück zum Zitat Ganesh, M., Joshi, M.C.: Numerical solutions of nonlinear integral equations on the half line. Numer. Funct. Anal. Optim. 10(11–12), 1115–1138 (1989)MathSciNetCrossRef Ganesh, M., Joshi, M.C.: Numerical solutions of nonlinear integral equations on the half line. Numer. Funct. Anal. Optim. 10(11–12), 1115–1138 (1989)MathSciNetCrossRef
17.
Zurück zum Zitat Golberg, M.A., Chen, C.S., Fromme, J.A.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997) Golberg, M.A., Chen, C.S., Fromme, J.A.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997)
18.
Zurück zum Zitat Golberg, M., Bowman, H.: Optimal convergence rates for some discrete projection methods. Appl. Math. Comput. 96(2–3), 237–271 (1998)MathSciNet Golberg, M., Bowman, H.: Optimal convergence rates for some discrete projection methods. Appl. Math. Comput. 96(2–3), 237–271 (1998)MathSciNet
19.
Zurück zum Zitat Graham, I.G., Mendes, W.R.: Nystrom-product integration for Wiener–Hopf equations with applications to radiative transfer. IMA J. Numer. Anal. 9(2), 261–284 (1989)MathSciNetCrossRef Graham, I.G., Mendes, W.R.: Nystrom-product integration for Wiener–Hopf equations with applications to radiative transfer. IMA J. Numer. Anal. 9(2), 261–284 (1989)MathSciNetCrossRef
20.
Zurück zum Zitat Khachatryan, A.K., Khachatryan, K.A.: Hammerstein–Nemytskii type nonlinear integral equations on half-line in space \( L_1 (0,+\infty )\cap L_ {\infty }(0,+\infty ) \). Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica. 52(1), 89–100 (2013)MathSciNet Khachatryan, A.K., Khachatryan, K.A.: Hammerstein–Nemytskii type nonlinear integral equations on half-line in space \( L_1 (0,+\infty )\cap L_ {\infty }(0,+\infty ) \). Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica. 52(1), 89–100 (2013)MathSciNet
21.
Zurück zum Zitat Kumar, S., Sloan, I.H.: A new collocation-type method for Hammerstein integral equations. Math. Comput. 48(178), 585–593 (1987)MathSciNetCrossRef Kumar, S., Sloan, I.H.: A new collocation-type method for Hammerstein integral equations. Math. Comput. 48(178), 585–593 (1987)MathSciNetCrossRef
22.
Zurück zum Zitat Long, G., Nelakanti, G., Panigrahi, B.L., Sahani, M.M.: Discrete multi-projection methods for eigen-problems of compact integral operators. Appl. Math. Comput. 217(8), 3974–3984 (2010)MathSciNet Long, G., Nelakanti, G., Panigrahi, B.L., Sahani, M.M.: Discrete multi-projection methods for eigen-problems of compact integral operators. Appl. Math. Comput. 217(8), 3974–3984 (2010)MathSciNet
23.
Zurück zum Zitat Nahid, N., Nelakanti, G.: Discrete projection methods for Hammerstein integral equations on the half-line. Calcolo 57(4), 1–42 (2020)MathSciNetCrossRef Nahid, N., Nelakanti, G.: Discrete projection methods for Hammerstein integral equations on the half-line. Calcolo 57(4), 1–42 (2020)MathSciNetCrossRef
24.
Zurück zum Zitat Nahid, N., Das, P., Nelakanti, G.: Projection and multi projection methods for nonlinear integral equations on the half-line. J. Comput. Appl. Math. 359, 119–144 (2019)MathSciNetCrossRef Nahid, N., Das, P., Nelakanti, G.: Projection and multi projection methods for nonlinear integral equations on the half-line. J. Comput. Appl. Math. 359, 119–144 (2019)MathSciNetCrossRef
25.
Zurück zum Zitat Nigam, R., Nahid, N., Chakraborty, S., Nelakanti, G.: Superconvergence results for non-linear Hammerstein integral equations on unbounded domain. Numer. Algorithms 94, 1243–1279 (2023)MathSciNetCrossRef Nigam, R., Nahid, N., Chakraborty, S., Nelakanti, G.: Superconvergence results for non-linear Hammerstein integral equations on unbounded domain. Numer. Algorithms 94, 1243–1279 (2023)MathSciNetCrossRef
26.
Zurück zum Zitat Rahmoune, A.: On the numerical solution of integral equations of the second kind over infinite intervals. J. Appl. Math. Comput. 66(1–2), 129–148 (2021)MathSciNetCrossRef Rahmoune, A.: On the numerical solution of integral equations of the second kind over infinite intervals. J. Appl. Math. Comput. 66(1–2), 129–148 (2021)MathSciNetCrossRef
27.
Zurück zum Zitat Rahmoune, A.: Spectral collocation method for solving Fredholm integral equations on the half-line. Appl. Math. Comput. 219(17), 9254–9260 (2013)MathSciNet Rahmoune, A.: Spectral collocation method for solving Fredholm integral equations on the half-line. Appl. Math. Comput. 219(17), 9254–9260 (2013)MathSciNet
28.
Zurück zum Zitat Remili, W., Rahmoune, A.: Modified Legendre rational and exponential collocation methods for solving nonlinear Hammerstein integral equations on the semi-infinite domain. Int. J. Comput. Math. 99(10), 2018–2041 (2022)MathSciNetCrossRef Remili, W., Rahmoune, A.: Modified Legendre rational and exponential collocation methods for solving nonlinear Hammerstein integral equations on the semi-infinite domain. Int. J. Comput. Math. 99(10), 2018–2041 (2022)MathSciNetCrossRef
29.
Zurück zum Zitat Schumaker, L.: Spline Functions: Basic Theory. Cambridge University Press, Cambridge (2007)CrossRef Schumaker, L.: Spline Functions: Basic Theory. Cambridge University Press, Cambridge (2007)CrossRef
30.
Zurück zum Zitat Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods for non-linear equations. USSR Comput. Math. Math. Phys. 7(4), 1–41 (1967)CrossRef Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods for non-linear equations. USSR Comput. Math. Math. Phys. 7(4), 1–41 (1967)CrossRef
Metadaten
Titel
Discrete projection methods for Fredholm–Hammerstein integral equations using Kumar and Sloan technique
verfasst von
Ritu Nigam
Nilofar Nahid
Samiran Chakraborty
Gnaneshwar Nelakanti
Publikationsdatum
01.06.2024
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 2/2024
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-024-00573-5

Weitere Artikel der Ausgabe 2/2024

Calcolo 2/2024 Zur Ausgabe

Premium Partner