Skip to main content
Top

15-02-2024

Discrete Pseudo-differential Operators and Applications to Numerical Schemes

Authors: Erwan Faou, Benoît Grébert

Published in: Foundations of Computational Mathematics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider a class of discrete operators introduced by O. Chodosh, acting on infinite sequences and mimicking standard properties of pseudo-differential operators. By using a new approach, we extend this class to finite or periodic sequences, allowing a general representation of discrete pseudo-differential operators obtained by finite differences approximations and easily transferred to time discretizations. In particular we can define the notion of order and regularity, and we recover the fundamental property, well known in pseudo-differential calculus, that the commutator of two discrete operators gains one order of regularity. As examples of practical applications, we revisit standard error estimates for the convergence of splitting methods, obtaining in some Hamiltonian cases no loss of derivative in the error estimates, in particular for discretizations of general waves and/or water-waves equations. Moreover, we give an example of preconditioner constructions inspired by normal form analysis to deal with the similar question for more general cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Here \(\langle x\rangle ^2=1+|x|^2\).
 
2
Using typically the fact that the unbounded part can be diagonalized explicitly in Fourier to define mild-solutions, an example is given below.
 
3
Working with arbitrary integers is of course possible, by changing the structure of \(G_K\) according to the parity of K, see [12]
 
4
It is also easy to prove the stability estimates (4.3)
 
Literature
1.
go back to reference S. Agmon, A. Douglis and L. Nirenberg , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12, 623–727, (1959)MathSciNetCrossRef S. Agmon, A. Douglis and L. Nirenberg , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12, 623–727, (1959)MathSciNetCrossRef
2.
go back to reference P. Bader, A. Iserles, K. Kropielnicka and P. Singh, Effective approximation for the linear time-dependent Schrödinger equation, Found. Comp. Maths 14 (2014), 689–720.CrossRef P. Bader, A. Iserles, K. Kropielnicka and P. Singh, Effective approximation for the linear time-dependent Schrödinger equation, Found. Comp. Maths 14 (2014), 689–720.CrossRef
3.
go back to reference D. Bambusi, B. Grébert, A. Maspero and D. Robert. Growth of Sobolev norms for abstract linear Schrödinger equations. Journal of the European Mathematical Society 23 (2), 557-583, (2020).CrossRef D. Bambusi, B. Grébert, A. Maspero and D. Robert. Growth of Sobolev norms for abstract linear Schrödinger equations. Journal of the European Mathematical Society 23 (2), 557-583, (2020).CrossRef
4.
go back to reference J. Bernier, E. Faou and B. Grébert, Long time behavior of the solutions of NLW on the d-dimensional torus Forum of Math. Sigma (2020) 26 pages. J. Bernier, E. Faou and B. Grébert, Long time behavior of the solutions of NLW on the d-dimensional torus Forum of Math. Sigma (2020) 26 pages.
5.
go back to reference S. Blanes, F. Casas, A. Murua, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. 45, pp. 89–145 (2008).MathSciNet S. Blanes, F. Casas, A. Murua, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. 45, pp. 89–145 (2008).MathSciNet
6.
go back to reference A. Bressan, Hyperbolic system of conservation laws. The one-dimensional Cauchy problem, Oxford lecture series in mathematics and its applications 20, 2000. A. Bressan, Hyperbolic system of conservation laws. The one-dimensional Cauchy problem, Oxford lecture series in mathematics and its applications 20, 2000.
7.
go back to reference F. Casas, N. Crouseilles, E. Faou and M. Mehrenberger, High-order Hamiltonian splitting for Vlasov-Poisson equations. Numer. Math. 135, 769–801, (2017).MathSciNetCrossRef F. Casas, N. Crouseilles, E. Faou and M. Mehrenberger, High-order Hamiltonian splitting for Vlasov-Poisson equations. Numer. Math. 135, 769–801, (2017).MathSciNetCrossRef
8.
go back to reference W. Craig, D. Lannes, C. Sulem. Water waves over a rough bottom in the shallow water regime. Ann. I. H. Poincaré - AN 29 (2012) 233–259.MathSciNetCrossRefADS W. Craig, D. Lannes, C. Sulem. Water waves over a rough bottom in the shallow water regime. Ann. I. H. Poincaré - AN 29 (2012) 233–259.MathSciNetCrossRefADS
9.
go back to reference O. Chodosh, Infinite matrix representations of classes of pseudo-differential operators. Undergraduate thesis (2010). O. Chodosh, Infinite matrix representations of classes of pseudo-differential operators. Undergraduate thesis (2010).
10.
go back to reference O. Chodosh, Infinite matrix representations of isotropic pseudo-differential operators, Methods Appl. Anal., vol. 18, no. 4, 351–372, (2011)MathSciNetCrossRef O. Chodosh, Infinite matrix representations of isotropic pseudo-differential operators, Methods Appl. Anal., vol. 18, no. 4, 351–372, (2011)MathSciNetCrossRef
11.
go back to reference R. Di Perna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98, 511–547, (1989).MathSciNetCrossRefADS R. Di Perna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98, 511–547, (1989).MathSciNetCrossRefADS
12.
go back to reference E. Faou, Geometric Numerical Integration and Schrödinger Equations. European Math. Soc. 2012CrossRef E. Faou, Geometric Numerical Integration and Schrödinger Equations. European Math. Soc. 2012CrossRef
13.
go back to reference E. Faou and T. Jézéquel, Resonant time steps and instabilities in the numerical integration of Schrödinger equations. Differential and Integral Equations 28, 221–238, (2015).MathSciNetCrossRef E. Faou and T. Jézéquel, Resonant time steps and instabilities in the numerical integration of Schrödinger equations. Differential and Integral Equations 28, 221–238, (2015).MathSciNetCrossRef
14.
go back to reference J. Ginibre and G. Velo. Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. , 64(4):363–401, (1985)MathSciNet J. Ginibre and G. Velo. Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. , 64(4):363–401, (1985)MathSciNet
15.
go back to reference E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, second edition, 2006. E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, second edition, 2006.
16.
go back to reference L. Hörmander, The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Classics in Mathematics. Springer, 1987. L. Hörmander, The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Classics in Mathematics. Springer, 1987.
17.
18.
go back to reference D. Lannes, The Water Waves Problem, Mathematical Analysis and Asymptotics. Mathematical Surveys and Monographs, Vol. 188. American Mathematical Society, 2013. D. Lannes, The Water Waves Problem, Mathematical Analysis and Asymptotics. Mathematical Surveys and Monographs, Vol. 188. American Mathematical Society, 2013.
19.
go back to reference C. Lubich, From quantum to classical molecular dynamics: reduced models and numerical analysis. European Math. Soc., 2008. C. Lubich, From quantum to classical molecular dynamics: reduced models and numerical analysis. European Math. Soc., 2008.
20.
go back to reference A. Ostermann, F. Rousset, K. Schratz. Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21:725–765 (2021)MathSciNetCrossRef A. Ostermann, F. Rousset, K. Schratz. Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity. Found. Comput. Math. 21:725–765 (2021)MathSciNetCrossRef
21.
go back to reference M. E. Taylor, pseudo-differential Operators, Princeton Univ. Press (1981). M. E. Taylor, pseudo-differential Operators, Princeton Univ. Press (1981).
Metadata
Title
Discrete Pseudo-differential Operators and Applications to Numerical Schemes
Authors
Erwan Faou
Benoît Grébert
Publication date
15-02-2024
Publisher
Springer US
Published in
Foundations of Computational Mathematics
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-024-09645-y

Premium Partner