Skip to main content
Erschienen in: Foundations of Computational Mathematics 4/2014

01.08.2014

Effective Approximation for the Semiclassical Schrödinger Equation

verfasst von: Philipp Bader, Arieh Iserles, Karolina Kropielnicka, Pranav Singh

Erschienen in: Foundations of Computational Mathematics | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The computation of the semiclassical Schrödinger equation presents major challenges because of the presence of a small parameter. Assuming periodic boundary conditions, the standard approach consists of semi-discretisation with a spectral method, followed by an exponential splitting. In this paper we sketch an alternative strategy. Our analysis commences with the investigation of the free Lie algebra generated by differentiation and by multiplication with the interaction potential: it turns out that this algebra possesses a structure which renders it amenable to a very effective form of asymptotic splitting: exponential splitting where consecutive terms are scaled by increasing powers of the small parameter. This leads to methods which attain high spatial and temporal accuracy and whose cost scales as \({\mathcal {O}}\!\left( M\log M\right) \), where \(M\) is the number of degrees of freedom in the discretisation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Unless a non-existing term is subtracted and thus newly introduced instead of removed.
 
2
Using a Fourier basis the cost is \({\mathcal {O}}\!\left( M\log M\right) \).
 
3
As before, a tilde denotes a discretisation.
 
4
All powers of \(\tau \) are odd because of the palindromy of the symmetric BCH formula. Since \(\tau ={\mathrm {i}}\Delta t\), this means that they always contribute a multiple of \(\pm {\mathrm {i}}\).
 
Literatur
1.
Zurück zum Zitat Blanes, S., Casas, F. & Murua, A. (2006), Symplectic splitting operator methods tailored for the time-dependent Schrödinger equation, J. Chem. Phys. 124, 234–105. Blanes, S., Casas, F. & Murua, A. (2006), Symplectic splitting operator methods tailored for the time-dependent Schrödinger equation, J. Chem. Phys. 124, 234–105.
2.
Zurück zum Zitat Bungartz, H.-J. & Griebel, M. (2004), Sparse grids, Acta Numer. 13, 147–269. Bungartz, H.-J. & Griebel, M. (2004), Sparse grids, Acta Numer. 13, 147–269.
3.
Zurück zum Zitat Casas, F. & Murua, A. (2009), An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications, J. Math. Phys. 50, (electronic). Casas, F. & Murua, A. (2009), An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications, J. Math. Phys. 50, (electronic).
4.
Zurück zum Zitat Faou, E. (2012), Geometric Numerical Integration and Schrödinger Equations, Zurich Lectures in Advanced Mathematics, The European Mathematical Society, Zürich. Faou, E. (2012), Geometric Numerical Integration and Schrödinger Equations, Zurich Lectures in Advanced Mathematics, The European Mathematical Society, Zürich.
5.
Zurück zum Zitat Gallopoulos, E. & Saad, Y. (1992), Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput. 13, 1236–1264. Gallopoulos, E. & Saad, Y. (1992), Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput. 13, 1236–1264.
6.
Zurück zum Zitat Golub, G. H. & Van Loan, C. F. (1996), Matrix Computations, 3rd edn, Johns Hopkins University Press, Baltimore. Golub, G. H. & Van Loan, C. F. (1996), Matrix Computations, 3rd edn, Johns Hopkins University Press, Baltimore.
7.
Zurück zum Zitat Griffiths, D. J. (2004), Introduction to Quantum Mechanics, 2nd edn, Prentice Hall, Upper Saddle River, NJ. Griffiths, D. J. (2004), Introduction to Quantum Mechanics, 2nd edn, Prentice Hall, Upper Saddle River, NJ.
8.
Zurück zum Zitat Hairer, E., Lubich, C. & Wanner, G. (2006), Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn, Springer, Berlin. Hairer, E., Lubich, C. & Wanner, G. (2006), Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn, Springer, Berlin.
9.
Zurück zum Zitat Hesthaven, J. S., Gottlieb, S. & Gottlieb, D. (2007), Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge. Hesthaven, J. S., Gottlieb, S. & Gottlieb, D. (2007), Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge.
10.
Zurück zum Zitat Hochbruck, M. & Lubich, C. (1997), On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34, 1911–1925. Hochbruck, M. & Lubich, C. (1997), On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34, 1911–1925.
11.
Zurück zum Zitat Iserles, A. (2008), A First Course in the Numerical Analysis of Differential Equations, 2nd edn, Cambridge University Press, Cambridge. Iserles, A. (2008), A First Course in the Numerical Analysis of Differential Equations, 2nd edn, Cambridge University Press, Cambridge.
12.
Zurück zum Zitat Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. & Zanna, A. (2000), Lie-group methods, Acta Numer. 9, 215–365. Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. & Zanna, A. (2000), Lie-group methods, Acta Numer. 9, 215–365.
13.
Zurück zum Zitat Jin, S., Markowich, P. & Sparber, C. (2011), Mathematical and computational methods for semiclassical Schrödinger equations, Acta Numer. 20, 121–210. Jin, S., Markowich, P. & Sparber, C. (2011), Mathematical and computational methods for semiclassical Schrödinger equations, Acta Numer. 20, 121–210.
14.
Zurück zum Zitat Lubich, C. (2008), From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, The European Mathematical Society , Zürich. Lubich, C. (2008), From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, The European Mathematical Society , Zürich.
15.
Zurück zum Zitat McLachlan, R. I. & Quispel, G. R. W. (2002), Splitting methods, Acta Numer. 11, 341–434. McLachlan, R. I. & Quispel, G. R. W. (2002), Splitting methods, Acta Numer. 11, 341–434.
16.
Zurück zum Zitat McLachlan, R. I., Munthe-Kaas, H. Z., Quispel, G. R. W. & Zanna, A. (2008), Explicit volume-preserving splitting methods for linear and quadratic divergence-free vector fields, Found. Comput. Math. 8, 335–3554. McLachlan, R. I., Munthe-Kaas, H. Z., Quispel, G. R. W. & Zanna, A. (2008), Explicit volume-preserving splitting methods for linear and quadratic divergence-free vector fields, Found. Comput. Math. 8, 335–3554.
17.
Zurück zum Zitat Oteo, J. A. (1991), The Baker–Campbell–Hausdorff formula and nested commutator identities, J. Math. Phys. 32, 419–424. Oteo, J. A. (1991), The Baker–Campbell–Hausdorff formula and nested commutator identities, J. Math. Phys. 32, 419–424.
18.
Zurück zum Zitat Reutenauer, C. (1993), Free Lie Algebras, London Mathematical Society Monographs 7, Oxford University Press, Oxford. Reutenauer, C. (1993), Free Lie Algebras, London Mathematical Society Monographs 7, Oxford University Press, Oxford.
19.
Zurück zum Zitat Tal Ezer, H. & Kosloff, R. (1984), An accurate and efficient scheme for propagating the time dependent Schrödinger equation, J. Chem. Phys. 81, 3967–3976. Tal Ezer, H. & Kosloff, R. (1984), An accurate and efficient scheme for propagating the time dependent Schrödinger equation, J. Chem. Phys. 81, 3967–3976.
20.
Zurück zum Zitat Yošida, H. (1990), Construction of higher order symplectic integrators, Phys. Lett. 150, 262–268. Yošida, H. (1990), Construction of higher order symplectic integrators, Phys. Lett. 150, 262–268.
Metadaten
Titel
Effective Approximation for the Semiclassical Schrödinger Equation
verfasst von
Philipp Bader
Arieh Iserles
Karolina Kropielnicka
Pranav Singh
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 4/2014
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-013-9182-8

Weitere Artikel der Ausgabe 4/2014

Foundations of Computational Mathematics 4/2014 Zur Ausgabe

Premium Partner