Skip to main content
Top
Published in: Engineering with Computers 2/2021

11-10-2019 | Original Article

Discrete sizing optimization of stepped cylindrical silo using PSO method and implicit dynamic FE analysis

Authors: Zhongke Tian, Dongmei Jiao

Published in: Engineering with Computers | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Considering the size discreteness of commercially available metal plates and the intrinsic buckling strength vulnerability of slender silo, this paper proposed a methodology, which integrated the nonlinear implicit dynamic Finite Element Method (FEM), Particle Swarm Optimization (PSO) algorithm and MATLAB programming, to optimize the wall-thickness layout for stepped thin-walled cylindrical silo, with the objective of minimizing silo mass while ensuring its structural stability. Taking into account both practicality and reliability, silo discharge loads were amplified 1.6 times to try to reflect the comprehensive effectiveness of negative and positive factors on slender silo buckling strength. When evaluating the fitness of PSO method, nonlinear implicit dynamic FEM results, such as kinetic energy history data plots, total energy history data plots, etc., were used to intuitively determine whether silo buckled or not. In essence, the optimal wall-thickness layout problem of a stepped silo is an NP-hard combinational optimization problem. The discrete thicknesses of rolled metal plates set an unavoidable constraint on stepped silo size optimization, which implies that there are only a few specific thickness values could be selected. In addition, the data of plate width are also discrete and one width value might correspond to several thickness data. For reasons for saving the potential cutting costs, the heights of most silo segments should be an integral multiple of the corresponding plate width value as far as possible, while the overall height of the silo should be kept still. To realize this goal, numerical processing techniques, such as generating a random number from a uniformly distributed set of discrete positive integers, linear normalization and linear interpolation, etc., were applied in this study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rotter JM (2001) Guide for the economic design of circular metal silos. Spon Press, London, New York Rotter JM (2001) Guide for the economic design of circular metal silos. Spon Press, London, New York
2.
go back to reference Juan A, Moran JM, Guerra MI, Couto A, Ayuga F, Aguado PJ (2006) Establishing stress state of cylindrical metal silos using finite element method: comparison with ENV 1993. Thin-Walled Struct 44(11):1192–1200 Juan A, Moran JM, Guerra MI, Couto A, Ayuga F, Aguado PJ (2006) Establishing stress state of cylindrical metal silos using finite element method: comparison with ENV 1993. Thin-Walled Struct 44(11):1192–1200
3.
go back to reference Teng JG, Ooi JY, Chen JF (2008) Structures and granular solids: from scientific principles to engineering. Taylor & Francis Group, London Teng JG, Ooi JY, Chen JF (2008) Structures and granular solids: from scientific principles to engineering. Taylor & Francis Group, London
4.
go back to reference Carson J, Craig D (2015) Silo design codes: their limits and inconsistencies. Proc Eng 102:647–656 Carson J, Craig D (2015) Silo design codes: their limits and inconsistencies. Proc Eng 102:647–656
5.
go back to reference Gallego E, Ruiz A, Aguado PJ (2015) Simulation of silo filling and discharge using ANSYS and comparison with experimental data. Comput Electr Agric 118:281–289 Gallego E, Ruiz A, Aguado PJ (2015) Simulation of silo filling and discharge using ANSYS and comparison with experimental data. Comput Electr Agric 118:281–289
6.
go back to reference Goodey RJ, Brown CJ, Rotter JM (2017) Rectangular steel silos: finite element predictions of filling wall pressures. Eng Struct 132:61–69 Goodey RJ, Brown CJ, Rotter JM (2017) Rectangular steel silos: finite element predictions of filling wall pressures. Eng Struct 132:61–69
7.
go back to reference Iwicki P, Tejchman J, Chróścielewski J (2014) Dynamic FE simulations of buckling process in thin-walled cylindrical metal silos. Thin-Walled Struct 84:344–359 Iwicki P, Tejchman J, Chróścielewski J (2014) Dynamic FE simulations of buckling process in thin-walled cylindrical metal silos. Thin-Walled Struct 84:344–359
8.
go back to reference Iwicki P, Rejowski K, Tejchman J (2015) Stability of cylindrical steel silos composed of corrugated sheets and columns based on FE analyses versus Eurocode 3 approach. Eng Fail Anal 57:444–469 Iwicki P, Rejowski K, Tejchman J (2015) Stability of cylindrical steel silos composed of corrugated sheets and columns based on FE analyses versus Eurocode 3 approach. Eng Fail Anal 57:444–469
9.
go back to reference Iwicki P, Sondej M, Tejchman J (2016) Application of linear buckling sensitivity analysis to economic design of cylindrical steel silos composed of corrugated sheets and columns. Eng Fail Anal 70:105–121 Iwicki P, Sondej M, Tejchman J (2016) Application of linear buckling sensitivity analysis to economic design of cylindrical steel silos composed of corrugated sheets and columns. Eng Fail Anal 70:105–121
10.
go back to reference Sondej M, Iwicki P, Tejchman J, Wójcik M (2015) Critical assessment of Eurocode approach to stability of metal cylindrical silos with corrugated walls and vertical stiffeners. Thin-Walled Struct 95:335–346 Sondej M, Iwicki P, Tejchman J, Wójcik M (2015) Critical assessment of Eurocode approach to stability of metal cylindrical silos with corrugated walls and vertical stiffeners. Thin-Walled Struct 95:335–346
11.
go back to reference Kuczyńska N, Wójcik M, Tejchman J (2015) Effect of bulk solid on strength of cylindrical corrugated silos during filling. J Constr Steel Res 115:1–17 Kuczyńska N, Wójcik M, Tejchman J (2015) Effect of bulk solid on strength of cylindrical corrugated silos during filling. J Constr Steel Res 115:1–17
12.
go back to reference Chen L, Rotter JM, Doerich C (2012) Practical calculations for uniform external pressure buckling in cylindrical shells with stepped walls. Thin-Walled Struct 61:162–168 Chen L, Rotter JM, Doerich C (2012) Practical calculations for uniform external pressure buckling in cylindrical shells with stepped walls. Thin-Walled Struct 61:162–168
13.
go back to reference Chen L, Rotter JM, Doerich C (2011) Buckling of cylindrical shells with stepwise variable wall thickness under uniform external pressure. Eng Struct 33:3570–3578 Chen L, Rotter JM, Doerich C (2011) Buckling of cylindrical shells with stepwise variable wall thickness under uniform external pressure. Eng Struct 33:3570–3578
14.
go back to reference Sadowski AJ, Rotter JM (2010) Study of buckling in steel silos under eccentric discharge flows of stored solids. J Eng Mech 136:769–776 Sadowski AJ, Rotter JM (2010) Study of buckling in steel silos under eccentric discharge flows of stored solids. J Eng Mech 136:769–776
15.
go back to reference Sadowski AJ, Rotter JM (2011) Steel silos with different aspect ratios: II—behavior under eccentric discharge. J Constr Steel Res 67:1545–1553 Sadowski AJ, Rotter JM (2011) Steel silos with different aspect ratios: II—behavior under eccentric discharge. J Constr Steel Res 67:1545–1553
16.
go back to reference Sadowski AJ, Rotter JM (2011) Buckling of very slender metal silos under eccentric discharge. Eng Struct 33:1187–1194 Sadowski AJ, Rotter JM (2011) Buckling of very slender metal silos under eccentric discharge. Eng Struct 33:1187–1194
17.
go back to reference Jármai K (2002) Design, fabrication and economy. Eur Integr Stud 1(2):91–107 Jármai K (2002) Design, fabrication and economy. Eur Integr Stud 1(2):91–107
18.
go back to reference Farkas J (2005) Structural optimization as a harmony of design, fabrication and economy. Struct Multidiscip Optim 30(1):66–75 Farkas J (2005) Structural optimization as a harmony of design, fabrication and economy. Struct Multidiscip Optim 30(1):66–75
19.
go back to reference Jármai K, Snyman JA, Farkas J (2006) Minimum cost design of a welded orthogonally stiffened cylindrical shell. Comput Struct 84(12):787–797 Jármai K, Snyman JA, Farkas J (2006) Minimum cost design of a welded orthogonally stiffened cylindrical shell. Comput Struct 84(12):787–797
20.
go back to reference Bletzinger KU, Ramm E (1993) Form finding of shells by structural optimization. Eng Comput 9(1):27–35 Bletzinger KU, Ramm E (1993) Form finding of shells by structural optimization. Eng Comput 9(1):27–35
21.
go back to reference Lindby T, Santos JLT (1999) Shape optimization of three-dimensional shell structures with the shape parameterization of a CAD system. Struct Optim 18(2):126–133 Lindby T, Santos JLT (1999) Shape optimization of three-dimensional shell structures with the shape parameterization of a CAD system. Struct Optim 18(2):126–133
22.
go back to reference Ansola R, Canales J, Tarrago JA, Rasmussen J (2002) On simultaneous shape and material layout optimization of shell structures. Struct Multidiscipl Optim 24(3):175–184 Ansola R, Canales J, Tarrago JA, Rasmussen J (2002) On simultaneous shape and material layout optimization of shell structures. Struct Multidiscipl Optim 24(3):175–184
23.
go back to reference Dai L, Guan ZQ, Chen BS, Zhang HW (2008) An open platform of shape design optimization for shell structure. Struct Multidiscipl Optim 35(6):609–622 Dai L, Guan ZQ, Chen BS, Zhang HW (2008) An open platform of shape design optimization for shell structure. Struct Multidiscipl Optim 35(6):609–622
24.
go back to reference Liua M, Xing M, Yang QS, Yang XM (2012) Computational morphogenesis of free form shell structures by optimization. Proc Eng 31:608–612 Liua M, Xing M, Yang QS, Yang XM (2012) Computational morphogenesis of free form shell structures by optimization. Proc Eng 31:608–612
25.
go back to reference Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85(19–20):1579–1588 Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85(19–20):1579–1588
26.
go back to reference Jármai K (2007) Single- and multiobjective optimization of a welded stringer-stiffened cylindrical shell. Periodica Polytechnica: Civ Eng 51(2):11–18 Jármai K (2007) Single- and multiobjective optimization of a welded stringer-stiffened cylindrical shell. Periodica Polytechnica: Civ Eng 51(2):11–18
27.
go back to reference Vu VT (2010) Minimum weight design for toroidal pressure vessels using differential evolution and particle swarm optimization. Struct Multidiscipl Optim 42(3):351–369 Vu VT (2010) Minimum weight design for toroidal pressure vessels using differential evolution and particle swarm optimization. Struct Multidiscipl Optim 42(3):351–369
28.
go back to reference Rao AR, Shyju PP (2010) A meta-heuristic algorithm for multi-objective optimal design of hybrid laminate composite structures. Computer-Aided Civ Infrastruct Eng 25(3):149–170 Rao AR, Shyju PP (2010) A meta-heuristic algorithm for multi-objective optimal design of hybrid laminate composite structures. Computer-Aided Civ Infrastruct Eng 25(3):149–170
29.
go back to reference Lagaros ND, Papadrakakis M (2012) Applied soft computing for optimum design of structures. Struct Multidiscipl Optim 45(6):787–799MATH Lagaros ND, Papadrakakis M (2012) Applied soft computing for optimum design of structures. Struct Multidiscipl Optim 45(6):787–799MATH
30.
go back to reference Cai X, Zhu J, Pan P, Gu R (2012) Structural optimization design of horizontal-axis wind turbine blades using a particle swarm optimization algorithm and finite element method. Energies 5(11):4683–4696 Cai X, Zhu J, Pan P, Gu R (2012) Structural optimization design of horizontal-axis wind turbine blades using a particle swarm optimization algorithm and finite element method. Energies 5(11):4683–4696
31.
go back to reference Chen J, Tang Y, Ge R, An Q, Guo X (2013) Reliability design optimization of composite structures based on PSO together with FEA. Chin J Aeronaut 26(2):343–349 Chen J, Tang Y, Ge R, An Q, Guo X (2013) Reliability design optimization of composite structures based on PSO together with FEA. Chin J Aeronaut 26(2):343–349
32.
go back to reference Jiang W, Lin Y, Chen M, Yu Y (2015) Research on the optimization approach for cargo oil tank design based on the improved particle swarm optimization algorithm. J Shanghai Jiaotong Univ (Sci) 20(5):565–570 Jiang W, Lin Y, Chen M, Yu Y (2015) Research on the optimization approach for cargo oil tank design based on the improved particle swarm optimization algorithm. J Shanghai Jiaotong Univ (Sci) 20(5):565–570
33.
go back to reference Foryś P (2015) Optimization of cylindrical shells stiffened by rings under external pressure including their post-buckling behavior. Thin-Walled Struct 95:231–243 Foryś P (2015) Optimization of cylindrical shells stiffened by rings under external pressure including their post-buckling behavior. Thin-Walled Struct 95:231–243
34.
go back to reference Szczepanik M, Poteralski A, Kalinowski M (2016) Optimization of the shell compliance by the thickness changing using PSO. IOP Confer Ser Mater Sci Eng 161(1):012018 Szczepanik M, Poteralski A, Kalinowski M (2016) Optimization of the shell compliance by the thickness changing using PSO. IOP Confer Ser Mater Sci Eng 161(1):012018
35.
go back to reference Vu VT (2016) Minimum weight design for toroidal shells with strengthening component. J Press Vessel Technol Trans ASME 138(2):021202/1–021202/7 Vu VT (2016) Minimum weight design for toroidal shells with strengthening component. J Press Vessel Technol Trans ASME 138(2):021202/1–021202/7
36.
go back to reference Sun W, Cheng W (2017) Finite element model updating of honeycomb sandwich plates using a response surface model and global optimization technique. Struct Multidiscipl Optim 55(1):121–139 Sun W, Cheng W (2017) Finite element model updating of honeycomb sandwich plates using a response surface model and global optimization technique. Struct Multidiscipl Optim 55(1):121–139
37.
go back to reference Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Confer Neural Netw 4:1942–1948 Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Confer Neural Netw 4:1942–1948
38.
go back to reference Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, pp 39-43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, pp 39-43
39.
go back to reference Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: Proceedings of IEEE international conference on evolutionary computation, pp 303–308 Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: Proceedings of IEEE international conference on evolutionary computation, pp 303–308
40.
go back to reference Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE international conference on evolutionary computation, pp 69–73 Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE international conference on evolutionary computation, pp 69–73
41.
go back to reference Angeline RJ (1998) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Proceeding of the 7th international conference on evolutionary programming, pp 601–610 Angeline RJ (1998) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Proceeding of the 7th international conference on evolutionary programming, pp 601–610
42.
go back to reference Eberhart R, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the IEEE congress on evolutionary computation, pp 81–86 Eberhart R, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the IEEE congress on evolutionary computation, pp 81–86
43.
go back to reference Shi Y, Eberhart R (1998) Parameter selection in particle swarm optimization. Evolutionary programming VII. Lecture Notes Comput Sci 1447:591–600 Shi Y, Eberhart R (1998) Parameter selection in particle swarm optimization. Evolutionary programming VII. Lecture Notes Comput Sci 1447:591–600
44.
go back to reference Pedersen M, Chipperfield A (2010) Simplifying particle swarm optimization. Appl Soft Comput 10(2):618–628 Pedersen M, Chipperfield A (2010) Simplifying particle swarm optimization. Appl Soft Comput 10(2):618–628
45.
go back to reference Eberhart R, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: Proceeding of the 7th international conference on evolutionary programming, pp 611–616 Eberhart R, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: Proceeding of the 7th international conference on evolutionary programming, pp 611–616
46.
go back to reference Luh G, Lin C (2011) Optimal design of truss-structures using particle swarm optimization. Comput Struct 89(23–24):2221–2232 Luh G, Lin C (2011) Optimal design of truss-structures using particle swarm optimization. Comput Struct 89(23–24):2221–2232
47.
go back to reference Volke S, Middendorf M, Hlawitschka M, Kasten J, Zeckzer D, Scheuermann G (2013) dPSO-Vis: topology-based visualization of discrete particle swarm optimization. Comput Gr Forum 32(3):351–360 Volke S, Middendorf M, Hlawitschka M, Kasten J, Zeckzer D, Scheuermann G (2013) dPSO-Vis: topology-based visualization of discrete particle swarm optimization. Comput Gr Forum 32(3):351–360
48.
go back to reference Pradeepmon T, Panicker V, Sridharan R (2016) Parameter selection of discrete particle swarm optimization algorithm for the quadratic assignment problems. Proc Technol 25:998–1005 Pradeepmon T, Panicker V, Sridharan R (2016) Parameter selection of discrete particle swarm optimization algorithm for the quadratic assignment problems. Proc Technol 25:998–1005
49.
go back to reference Zouache D, Nouioua F, Moussaoui A (2016) Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems. Soft Comput 20(7):2781–2799 Zouache D, Nouioua F, Moussaoui A (2016) Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems. Soft Comput 20(7):2781–2799
50.
go back to reference Jordehi A, Jasni J (2015) Particle swarm optimisation for discrete optimisation problems: a review. Artif Intell Rev 43(2):243–258 Jordehi A, Jasni J (2015) Particle swarm optimisation for discrete optimisation problems: a review. Artif Intell Rev 43(2):243–258
51.
go back to reference Li L, Huang Z, Liu F (2009) A heuristic particle swarm optimization method for truss structures with discrete variables. Comput Struct 87(7–8):435–443 Li L, Huang Z, Liu F (2009) A heuristic particle swarm optimization method for truss structures with discrete variables. Comput Struct 87(7–8):435–443
52.
go back to reference Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures with discrete variables. J Constr Steel Res 65(8–9):1558–1568 Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures with discrete variables. J Constr Steel Res 65(8–9):1558–1568
53.
go back to reference Shojaee S, Arjomand M, Khatibinia M (2013) A hybrid algorithm for sizing and layout optimization of truss structures combining discrete PSO and convex approximation. Int J Optim Civ Eng 3(1):57–83 Shojaee S, Arjomand M, Khatibinia M (2013) A hybrid algorithm for sizing and layout optimization of truss structures combining discrete PSO and convex approximation. Int J Optim Civ Eng 3(1):57–83
54.
go back to reference Yang B, Zhang Q, Li H (2015) Solving truss topological optimization with discrete design variables via swarm intelligence. KSCE J Civ Eng 19(4):952–963 Yang B, Zhang Q, Li H (2015) Solving truss topological optimization with discrete design variables via swarm intelligence. KSCE J Civ Eng 19(4):952–963
55.
go back to reference Cheng M, Prayogo D, Wua Y, Lukito M (2016) A hybrid harmony search algorithm for discrete sizing optimization of truss structure. Autom Constr 69:21–33 Cheng M, Prayogo D, Wua Y, Lukito M (2016) A hybrid harmony search algorithm for discrete sizing optimization of truss structure. Autom Constr 69:21–33
56.
go back to reference Yang I, Hsieh Y, Kuo C (2016) Integrated multiobjective framework for reliability-based design optimization with discrete design variables. Autom Constr 63:162–172 Yang I, Hsieh Y, Kuo C (2016) Integrated multiobjective framework for reliability-based design optimization with discrete design variables. Autom Constr 63:162–172
Metadata
Title
Discrete sizing optimization of stepped cylindrical silo using PSO method and implicit dynamic FE analysis
Authors
Zhongke Tian
Dongmei Jiao
Publication date
11-10-2019
Publisher
Springer London
Published in
Engineering with Computers / Issue 2/2021
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00870-6

Other articles of this Issue 2/2021

Engineering with Computers 2/2021 Go to the issue