Skip to main content
Top
Published in: Journal of Nanoparticle Research 10/2012

01-10-2012 | Research Paper

Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity

Authors: Justin M. Zook, Melissa D. Halter, Danielle Cleveland, Stephen E. Long

Published in: Journal of Nanoparticle Research | Issue 10/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silver nanoparticles (AgNPs) are frequently coated with a variety of polymers, which may affect various interdependent mechanisms of toxicity or antimicrobial action, including agglomeration and dissolution rates. Here, we systematically measure how citrate, dextran, 5 and 20 kDa poly(ethylene glycol) (PEG), and poly(vinyl pyrrolidone) coatings affect AgNP agglomeration, dissolution, and toxicity. In addition, to disentangle the coatings’ effects on agglomeration from their other effects, we produce multiple stable agglomerate sizes of several of the coated ~23 nm AgNPs ranging from singly-dispersed to mean agglomerate sizes of several hundred nanometers. These dispersions allow us to independently study the effects of agglomeration and polymer coating on dissolution rate and hemolytic toxicity. We find that both hemolytic toxicity and dissolution rate are highest for the 5 kDa PEG coating, and toxicity and dissolution rate decrease significantly with increasing agglomerate size independent of coating. This correlation between toxicity and dissolution rate suggests that both polymer coating and agglomeration may affect hemolytic toxicity largely through their effects on dissolution. Because both the AgNP dissolution rate and hemolysis decrease only moderately compared to the large increases in agglomerate size, AgNPs’ hemolytic toxicity may be caused by their large surface area and consequently high dissolution rate, rather than from other size-specific effects. At the silver concentrations used in this work, silver dissolved from AgNPs is expected to be primarily in the form of AgCl NPs, which are therefore more likely than Ag+ ions to be the primary drivers of hemolytic toxicity. In addition, all AgNPs we tested are much more toxic to horse red blood cells than sheep red blood cells, highlighting the complexity of toxic responses and the need to test toxicity in multiple biological systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540CrossRef Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540CrossRef
go back to reference Cheng YW, Yin LY, Lin SH, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115(11):4425–4432. doi:10.1021/jp109789j CrossRef Cheng YW, Yin LY, Lin SH, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115(11):4425–4432. doi:10.​1021/​jp109789j CrossRef
go back to reference Dobrovoiskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8(8):2180–2187. doi:10.1021/nl0805615 CrossRef Dobrovoiskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8(8):2180–2187. doi:10.​1021/​nl0805615 CrossRef
go back to reference Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081CrossRef Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081CrossRef
go back to reference Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2011) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101(1):117–125. doi:10.1016/j.aquatox.2010.09.010 CrossRef Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2011) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101(1):117–125. doi:10.​1016/​j.​aquatox.​2010.​09.​010 CrossRef
go back to reference Guide (1993) Guide to the expression of uncertainty in measurement, 1st edn. ISO, Switzerland Guide (1993) Guide to the expression of uncertainty in measurement, 1st edn. ISO, Switzerland
go back to reference Jiang JK, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89. doi:10.1007/s11051-008-9446-4 CrossRef Jiang JK, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89. doi:10.​1007/​s11051-008-9446-4 CrossRef
go back to reference Liu JY, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913. doi:10.1021/nn102272n CrossRef Liu JY, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913. doi:10.​1021/​nn102272n CrossRef
go back to reference Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253. doi:10.1093/toxsci/kfm240 CrossRef Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253. doi:10.​1093/​toxsci/​kfm240 CrossRef
go back to reference Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964. doi:10.1021/es801785m CrossRef Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964. doi:10.​1021/​es801785m CrossRef
go back to reference Qureshi AT, Monroe WT, Lopez MJ, Janes ME, Dasa V, Park S, Amirsadeghi A, Hayes DJ (2011) Biocompatible/bioabsorbable silver nanocomposite coatings. J Appl Polym Sci 120(5):3042–3053. doi:10.1002/app.33481 CrossRef Qureshi AT, Monroe WT, Lopez MJ, Janes ME, Dasa V, Park S, Amirsadeghi A, Hayes DJ (2011) Biocompatible/bioabsorbable silver nanocomposite coatings. J Appl Polym Sci 120(5):3042–3053. doi:10.​1002/​app.​33481 CrossRef
go back to reference Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS (2009) Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother 53(8):3538–3540. doi:10.1128/aac.01106-08 CrossRef Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS (2009) Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother 53(8):3538–3540. doi:10.​1128/​aac.​01106-08 CrossRef
go back to reference Weitz DA, Oliveria M (1984) Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys Rev Lett 52(16):1433–1436CrossRef Weitz DA, Oliveria M (1984) Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys Rev Lett 52(16):1433–1436CrossRef
go back to reference Yeo MK, Yoon JW (2009) Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mole Cell Toxicol 5(1):23–31 Yeo MK, Yoon JW (2009) Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mole Cell Toxicol 5(1):23–31
go back to reference Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45(10):4422–4428. doi:10.1021/es104205a CrossRef Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45(10):4422–4428. doi:10.​1021/​es104205a CrossRef
go back to reference Zook JM, Long SE, Cleveland D, Geronimo CLA, Maccuspie RI (2011a) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-Visible absorbance. Anal Bioanal Chem 401(6):1993–2002CrossRef Zook JM, Long SE, Cleveland D, Geronimo CLA, Maccuspie RI (2011a) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-Visible absorbance. Anal Bioanal Chem 401(6):1993–2002CrossRef
go back to reference Zook JM, Maccuspie RI, Locascio LE, Halter MD, Elliott JT (2011b) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5(4):517–530. doi:10.3109/17435390.2010.536615 CrossRef Zook JM, Maccuspie RI, Locascio LE, Halter MD, Elliott JT (2011b) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5(4):517–530. doi:10.​3109/​17435390.​2010.​536615 CrossRef
go back to reference Zook JM, Rastogi V, Maccuspie RI, Keene AM, Fagan J (2011c) Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano 5(10):8070–8079. doi:10.1021/nn202645b CrossRef Zook JM, Rastogi V, Maccuspie RI, Keene AM, Fagan J (2011c) Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano 5(10):8070–8079. doi:10.​1021/​nn202645b CrossRef
Metadata
Title
Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity
Authors
Justin M. Zook
Melissa D. Halter
Danielle Cleveland
Stephen E. Long
Publication date
01-10-2012
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 10/2012
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1165-1

Other articles of this Issue 10/2012

Journal of Nanoparticle Research 10/2012 Go to the issue

Premium Partners