Skip to main content
Top

2018 | OriginalPaper | Chapter

Disinfection

Authors : Bey Fen Leo, Nurul Akmal Che Lah, Mahendran Samykano, Thiruchelvi Pulingam, Swee-Seong Tang, Sayonthoni Das Tuhi

Published in: Carbon Nanotubes for Clean Water

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The availability of clean, safe and healthy water is diminishing every day, which is projected to upsurge in future. To address this, numerous water decontamination methods and technologies being developed and adapted, and several new possibilities are in the way through extensive research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M.S.M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)CrossRef Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M.S.M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)CrossRef
2.
go back to reference Yang, C.N., Mamouni, J., Tang, Y.A., Yang, L.J.: Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26, 16013–16019 (2010)CrossRef Yang, C.N., Mamouni, J., Tang, Y.A., Yang, L.J.: Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26, 16013–16019 (2010)CrossRef
3.
go back to reference Iijima, S.: Growth of carbon nanotubes. Mater. Sci. Eng., B 19, 172–180 (1993)CrossRef Iijima, S.: Growth of carbon nanotubes. Mater. Sci. Eng., B 19, 172–180 (1993)CrossRef
4.
go back to reference Bethune, D., Klang, C., De Vries, M., Gorman, G., Savoy, R., Vazquez, J., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)CrossRef Bethune, D., Klang, C., De Vries, M., Gorman, G., Savoy, R., Vazquez, J., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)CrossRef
5.
go back to reference Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005)CrossRef Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005)CrossRef
6.
go back to reference Ong, Y.T., Ahmad, A.L., Zein, S.H.S., Tan, S.H.: A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz. J. Chem. Eng. 27, 227–242 (2010)CrossRef Ong, Y.T., Ahmad, A.L., Zein, S.H.S., Tan, S.H.: A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz. J. Chem. Eng. 27, 227–242 (2010)CrossRef
7.
go back to reference Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G., Lee, H.-Y., et al.: A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens. Actuators B Chem. 122, 672–682 (2007)CrossRef Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G., Lee, H.-Y., et al.: A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens. Actuators B Chem. 122, 672–682 (2007)CrossRef
8.
go back to reference Vecitis, C.D., Schnoor, M.H., Rahaman, M.S., Schiffman, J.D., Elimelech, M.: Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol. 45, 3672–3679 (2011)CrossRef Vecitis, C.D., Schnoor, M.H., Rahaman, M.S., Schiffman, J.D., Elimelech, M.: Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol. 45, 3672–3679 (2011)CrossRef
9.
go back to reference Upadhyayula, V.K., Deng, S., Mitchell, M.C., Smith, G.B.: Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ. 408, 1–13 (2009)CrossRef Upadhyayula, V.K., Deng, S., Mitchell, M.C., Smith, G.B.: Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ. 408, 1–13 (2009)CrossRef
10.
go back to reference Ounaies, Z., Park, C., Wise, K., Siochi, E., Harrison, J.: Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 63, 1637–1646 (2003)CrossRef Ounaies, Z., Park, C., Wise, K., Siochi, E., Harrison, J.: Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 63, 1637–1646 (2003)CrossRef
11.
go back to reference Upadhyayula, V.K., Deng, S., Smith, G.B., Mitchell, M.C.: Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram™. Water Res. 43, 148–156 (2009)CrossRef Upadhyayula, V.K., Deng, S., Smith, G.B., Mitchell, M.C.: Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram™. Water Res. 43, 148–156 (2009)CrossRef
12.
go back to reference Liu, H., Ru, J., Qu, J., Dai, R., Wang, Z., Hu, C.: Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent. Bioresour. Technol. 100, 2995–3002 (2009)CrossRef Liu, H., Ru, J., Qu, J., Dai, R., Wang, Z., Hu, C.: Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent. Bioresour. Technol. 100, 2995–3002 (2009)CrossRef
13.
go back to reference Karthikairaj, K., Isaiarasu, L., Sakthivel, N.: Efficacy of some herbal extracts on microbes causing flacherie disease in mulberry silkworm, Bombyx mori L. J. Biopesticides 7, 89 (2014) Karthikairaj, K., Isaiarasu, L., Sakthivel, N.: Efficacy of some herbal extracts on microbes causing flacherie disease in mulberry silkworm, Bombyx mori L. J. Biopesticides 7, 89 (2014)
14.
go back to reference Deokar, A.R., Lin, L.-Y., Chang, C.-C., Ling, Y.-C.: Single-walled carbon nanotube coated antibacterial paper: preparation and mechanistic study. J. Mater. Chem. B 1, 2639–2646 (2013)CrossRef Deokar, A.R., Lin, L.-Y., Chang, C.-C., Ling, Y.-C.: Single-walled carbon nanotube coated antibacterial paper: preparation and mechanistic study. J. Mater. Chem. B 1, 2639–2646 (2013)CrossRef
15.
go back to reference Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012)CrossRef Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012)CrossRef
16.
go back to reference Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y., Hao, H.: An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016, 10 (2016) Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y., Hao, H.: An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016, 10 (2016)
17.
go back to reference Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)CrossRef Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)CrossRef
18.
go back to reference Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005) Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005)
19.
go back to reference Parks, A.N., Chandler, G.T., Ho, K.T., Burgess, R.M., Ferguson, P.L.: Environmental biodegradability of [14C] single-walled carbon nanotubes by Trametes versicolor and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge. Environ. Toxicol. Chem. 34, 247–251 (2015)CrossRef Parks, A.N., Chandler, G.T., Ho, K.T., Burgess, R.M., Ferguson, P.L.: Environmental biodegradability of [14C] single-walled carbon nanotubes by Trametes versicolor and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge. Environ. Toxicol. Chem. 34, 247–251 (2015)CrossRef
20.
go back to reference Hu, L., Gao, S., Ding, X., Wang, D., Jiang, J., Jin, J., et al.: Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 9, 4835–4842 (2015)CrossRef Hu, L., Gao, S., Ding, X., Wang, D., Jiang, J., Jin, J., et al.: Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 9, 4835–4842 (2015)CrossRef
21.
go back to reference Tsai, P.-A., Kuo, H.-Y., Chiu, W.-M., Wu, J.-H.: Purification and functionalization of single-walled carbon nanotubes through different treatment procedures. J. Nanomater. 2013, 9 (2013) Tsai, P.-A., Kuo, H.-Y., Chiu, W.-M., Wu, J.-H.: Purification and functionalization of single-walled carbon nanotubes through different treatment procedures. J. Nanomater. 2013, 9 (2013)
22.
go back to reference Cho, H.-H., Wepasnick, K., Smith, B.A., Bangash, F.K., Fairbrother, D.H., Ball, W.P.: Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26, 967–981 (2010)CrossRef Cho, H.-H., Wepasnick, K., Smith, B.A., Bangash, F.K., Fairbrother, D.H., Ball, W.P.: Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26, 967–981 (2010)CrossRef
23.
go back to reference Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., et al.: A carbon nanotube wall membrane for water treatment. Nat. Commun. 6, 7109 (2015)CrossRef Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., et al.: A carbon nanotube wall membrane for water treatment. Nat. Commun. 6, 7109 (2015)CrossRef
24.
go back to reference Ma, C.-Y., Huang, S.-C., Chou, P.-H., Den, W., Hou, C.-H.: Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere 146, 113–120 (2016)CrossRef Ma, C.-Y., Huang, S.-C., Chou, P.-H., Den, W., Hou, C.-H.: Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere 146, 113–120 (2016)CrossRef
25.
go back to reference Mohammed, M.I., Abdul Razak, A.A., Hussein Al-Timimi, D.A.: Modified multiwalled carbon nanotubes for treatment of some organic dyes in wastewater. Adv. Mater. Sci. Eng. 2014, 10 (2014)CrossRef Mohammed, M.I., Abdul Razak, A.A., Hussein Al-Timimi, D.A.: Modified multiwalled carbon nanotubes for treatment of some organic dyes in wastewater. Adv. Mater. Sci. Eng. 2014, 10 (2014)CrossRef
26.
go back to reference Goh, P.S., Ismail, A.F.: Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination 356, 115–128 (2015)CrossRef Goh, P.S., Ismail, A.F.: Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination 356, 115–128 (2015)CrossRef
27.
go back to reference Mahmoud, K.A., Mansoor, B., Mansour, A., Khraisheh, M.: Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356, 208–225 (2015)CrossRef Mahmoud, K.A., Mansoor, B., Mansour, A., Khraisheh, M.: Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356, 208–225 (2015)CrossRef
28.
go back to reference Tijing, L.D., Woo, Y.C., Choi, J.-S., Lee, S., Kim, S.-H., Shon, H.K.: Fouling and its control in membrane distillation—a review. J. Membr. Sci. 475, 215–244 (2015)CrossRef Tijing, L.D., Woo, Y.C., Choi, J.-S., Lee, S., Kim, S.-H., Shon, H.K.: Fouling and its control in membrane distillation—a review. J. Membr. Sci. 475, 215–244 (2015)CrossRef
29.
go back to reference Kyoungjin An, A., Lee, E.-J., Guo, J., Jeong, S., Lee, J.-G., Ghaffour, N.: Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres. Sci. Rep. 7, 41562 (2017)CrossRef Kyoungjin An, A., Lee, E.-J., Guo, J., Jeong, S., Lee, J.-G., Ghaffour, N.: Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres. Sci. Rep. 7, 41562 (2017)CrossRef
30.
go back to reference Sun, L., He, X., Lu, J.: Super square carbon nanotube network: a new promising water desalination membrane. Npj Comput Mater. 2, 16004 (2016)CrossRef Sun, L., He, X., Lu, J.: Super square carbon nanotube network: a new promising water desalination membrane. Npj Comput Mater. 2, 16004 (2016)CrossRef
31.
go back to reference Song, Z., Xu, Z.: Ultimate osmosis engineered by the pore geometry and functionalization of carbon nanostructures. Sci. Rep. 5, 10597 (2015)CrossRef Song, Z., Xu, Z.: Ultimate osmosis engineered by the pore geometry and functionalization of carbon nanostructures. Sci. Rep. 5, 10597 (2015)CrossRef
32.
go back to reference Viraka Nellore, B.P., Kanchanapally, R., Pedraza, F., Sinha, S.S., Pramanik, A., Hamme, A.T., et al.: Bio-conjugated CNT-bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Appl. Mater. Interfaces. 7, 19210–19218 (2015)CrossRef Viraka Nellore, B.P., Kanchanapally, R., Pedraza, F., Sinha, S.S., Pramanik, A., Hamme, A.T., et al.: Bio-conjugated CNT-bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Appl. Mater. Interfaces. 7, 19210–19218 (2015)CrossRef
33.
go back to reference Gunawan, P., Guan, C., Song, X., Zhang, Q., Leong, S.S.J., Tang, C., et al.: Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5, 10033–10040 (2011)CrossRef Gunawan, P., Guan, C., Song, X., Zhang, Q., Leong, S.S.J., Tang, C., et al.: Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5, 10033–10040 (2011)CrossRef
34.
go back to reference Wei, G., Yu, H., Quan, X., Chen, S., Zhao, H., Fan, X.: Constructing all carbon nanotube hollow fiber membranes with improved performance in separation and antifouling for water treatment. Environ. Sci. Technol. 48, 8062–8068 (2014)CrossRef Wei, G., Yu, H., Quan, X., Chen, S., Zhao, H., Fan, X.: Constructing all carbon nanotube hollow fiber membranes with improved performance in separation and antifouling for water treatment. Environ. Sci. Technol. 48, 8062–8068 (2014)CrossRef
35.
go back to reference Fan, X., Zhao, H., Quan, X., Liu, Y., Chen, S.: Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation. Water Res. 88, 285–292 (2016)CrossRef Fan, X., Zhao, H., Quan, X., Liu, Y., Chen, S.: Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation. Water Res. 88, 285–292 (2016)CrossRef
36.
go back to reference Maas, M.: Carbon nanomaterials as antibacterial colloids. Materials 9, 617 (2016)CrossRef Maas, M.: Carbon nanomaterials as antibacterial colloids. Materials 9, 617 (2016)CrossRef
37.
go back to reference Kang, S., Mauter, M.S., Elimelech, M.: Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42, 7528–7534 (2008)CrossRef Kang, S., Mauter, M.S., Elimelech, M.: Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42, 7528–7534 (2008)CrossRef
38.
go back to reference Deng, S., Upadhyayula, V.K., Smith, G.B., Mitchell, M.C.: Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes. IEEE Sens. J. 8, 954–962 (2008)CrossRef Deng, S., Upadhyayula, V.K., Smith, G.B., Mitchell, M.C.: Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes. IEEE Sens. J. 8, 954–962 (2008)CrossRef
39.
go back to reference Chen, H., Wang, B., Gao, D., Guan, M., Zheng, L., Ouyang, H., et al.: Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9, 2735–2746 (2013)CrossRef Chen, H., Wang, B., Gao, D., Guan, M., Zheng, L., Ouyang, H., et al.: Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9, 2735–2746 (2013)CrossRef
40.
go back to reference Kang, S., Herzberg, M., Rodrigues, D.F., Elimelech, M.: Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24, 6409–6413 (2008)CrossRef Kang, S., Herzberg, M., Rodrigues, D.F., Elimelech, M.: Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24, 6409–6413 (2008)CrossRef
41.
go back to reference Rajavel, K., Gomathi, R., Manian, S., Rajendra Kumar, R.T.: In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir 30, 592–601 (2014)CrossRef Rajavel, K., Gomathi, R., Manian, S., Rajendra Kumar, R.T.: In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir 30, 592–601 (2014)CrossRef
42.
go back to reference Brinkman, C.L., Schmidt-Malan, S.M., Karau, M.J., Greenwood-Quaintance, K., Hassett, D.J., Mandrekar, J.N., et al.: Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species. PLoS ONE 11, e0168595 (2016)CrossRef Brinkman, C.L., Schmidt-Malan, S.M., Karau, M.J., Greenwood-Quaintance, K., Hassett, D.J., Mandrekar, J.N., et al.: Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species. PLoS ONE 11, e0168595 (2016)CrossRef
43.
go back to reference Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, K., Adibkia, K.: Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 5, 19–23 (2015) Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, K., Adibkia, K.: Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 5, 19–23 (2015)
44.
go back to reference Monticelli, L., Salonen, E., Ke, P.C., Vattulainen, I.: Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5, 4433–4445 (2009)CrossRef Monticelli, L., Salonen, E., Ke, P.C., Vattulainen, I.: Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5, 4433–4445 (2009)CrossRef
45.
go back to reference Chen, K.L., Bothun, G.D.: Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ. Sci. Technol. 48, 873–880 (2014)CrossRef Chen, K.L., Bothun, G.D.: Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ. Sci. Technol. 48, 873–880 (2014)CrossRef
46.
go back to reference Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., et al.: Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 43, 8423–8429 (2009)CrossRef Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., et al.: Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 43, 8423–8429 (2009)CrossRef
47.
go back to reference Hossain, F., Perales-Perez, O.J., Hwang, S., Román, F.: Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci. Total Environ. 466, 1047–1059 (2014)CrossRef Hossain, F., Perales-Perez, O.J., Hwang, S., Román, F.: Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci. Total Environ. 466, 1047–1059 (2014)CrossRef
48.
go back to reference Brady-Estévez, A.S., Kang, S., Elimelech, M.: A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4, 481–484 (2008)CrossRef Brady-Estévez, A.S., Kang, S., Elimelech, M.: A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4, 481–484 (2008)CrossRef
49.
go back to reference Yang, C., Mamouni, J., Tang, Y., Yang, L.: Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26, 16013–16019 (2010)CrossRef Yang, C., Mamouni, J., Tang, Y., Yang, L.: Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26, 16013–16019 (2010)CrossRef
50.
go back to reference Wang, R., Mikoryak, C., Li, S., Bushdiecker 2nd, D., Musselman, I.H., Pantano, P., et al.: Cytotoxicity screening of single-walled carbon nanotubes: detection and removal of cytotoxic contaminants from carboxylated carbon nanotubes. Mol. Pharm. 8, 1351–1361 (2011)CrossRef Wang, R., Mikoryak, C., Li, S., Bushdiecker 2nd, D., Musselman, I.H., Pantano, P., et al.: Cytotoxicity screening of single-walled carbon nanotubes: detection and removal of cytotoxic contaminants from carboxylated carbon nanotubes. Mol. Pharm. 8, 1351–1361 (2011)CrossRef
51.
go back to reference Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., et al.: The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168, 121–131 (2007)CrossRef Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., et al.: The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168, 121–131 (2007)CrossRef
52.
go back to reference Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., et al.: Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3, 3891–3902 (2009)CrossRef Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., et al.: Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3, 3891–3902 (2009)CrossRef
53.
go back to reference Huang, T., Tzeng, Y., Liu, Y., Chen, Y., Walker, K., Guntupalli, R., et al.: Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam. Relat. Mater. 13, 1098–1102 (2004)CrossRef Huang, T., Tzeng, Y., Liu, Y., Chen, Y., Walker, K., Guntupalli, R., et al.: Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam. Relat. Mater. 13, 1098–1102 (2004)CrossRef
54.
go back to reference Arias, L.R., Yang, L.: Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25, 3003–3012 (2009)CrossRef Arias, L.R., Yang, L.: Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25, 3003–3012 (2009)CrossRef
55.
go back to reference Akasaka, T., Watari, F.: Capture of bacteria by flexible carbon nanotubes. Acta Biomater. 5, 607–612 (2009)CrossRef Akasaka, T., Watari, F.: Capture of bacteria by flexible carbon nanotubes. Acta Biomater. 5, 607–612 (2009)CrossRef
56.
go back to reference De Volder, M.F., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRef De Volder, M.F., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRef
57.
go back to reference Liu, X., Wang, M., Zhang, S., Pan, B.: Application potential of carbon nanotubes in water treatment: a review. J. Environ. Sci. 25, 1263–1280 (2013)CrossRef Liu, X., Wang, M., Zhang, S., Pan, B.: Application potential of carbon nanotubes in water treatment: a review. J. Environ. Sci. 25, 1263–1280 (2013)CrossRef
58.
go back to reference Seo, Y., Hwang, J., Kim, J., Jeong, Y., Hwang, M.P., Choi, J., et al.: Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int. J. Nanomed. 9, 4621–4629 (2014) Seo, Y., Hwang, J., Kim, J., Jeong, Y., Hwang, M.P., Choi, J., et al.: Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int. J. Nanomed. 9, 4621–4629 (2014)
59.
go back to reference Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P.: Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009)CrossRef Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P.: Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009)CrossRef
60.
go back to reference Kar, S., Bindal, R., Tewari, P.: Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7, 385–389 (2012)CrossRef Kar, S., Bindal, R., Tewari, P.: Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7, 385–389 (2012)CrossRef
61.
go back to reference Daer, S., Kharraz, J., Giwa, A., Hasan, S.W.: Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367, 37–48 (2015)CrossRef Daer, S., Kharraz, J., Giwa, A., Hasan, S.W.: Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367, 37–48 (2015)CrossRef
62.
go back to reference Rodrigues, D.F., Jaisi, D.P., Elimelech, M.: Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ. Sci. Technol. 47, 625–633 (2013)CrossRef Rodrigues, D.F., Jaisi, D.P., Elimelech, M.: Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ. Sci. Technol. 47, 625–633 (2013)CrossRef
63.
go back to reference Smith, S.C., Rodrigues, D.F.: Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91, 122–143 (2015)CrossRef Smith, S.C., Rodrigues, D.F.: Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91, 122–143 (2015)CrossRef
64.
go back to reference Zhao, X., Liu, R.: Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 40, 244–255 (2012)CrossRef Zhao, X., Liu, R.: Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 40, 244–255 (2012)CrossRef
65.
go back to reference Coccini, T., Roda, E., Sarigiannis, D.A., Mustarelli, P., Quartarone, E., Profumo, A., et al.: Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269, 41–53 (2010)CrossRef Coccini, T., Roda, E., Sarigiannis, D.A., Mustarelli, P., Quartarone, E., Profumo, A., et al.: Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269, 41–53 (2010)CrossRef
66.
go back to reference Clar, J.G., Gustitus, S.A., Youn, S., Silvera Batista, C.A., Ziegler, K.J., Bonzongo, J.C.: Unique toxicological behavior from single-wall carbon nanotubes separated via selective adsorption on hydrogels. Environ. Sci. Technol. 49, 3913–3921 (2015)CrossRef Clar, J.G., Gustitus, S.A., Youn, S., Silvera Batista, C.A., Ziegler, K.J., Bonzongo, J.C.: Unique toxicological behavior from single-wall carbon nanotubes separated via selective adsorption on hydrogels. Environ. Sci. Technol. 49, 3913–3921 (2015)CrossRef
67.
go back to reference Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)CrossRef Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)CrossRef
68.
go back to reference Thines, R., Mubarak, N., Nizamuddin, S., Sahu, J., Abdullah, E., Ganesan, P.: Application potential of carbon nanomaterials in water and wastewater treatment: a review. J. Taiwan Inst. Chem. Eng. (2017) Thines, R., Mubarak, N., Nizamuddin, S., Sahu, J., Abdullah, E., Ganesan, P.: Application potential of carbon nanomaterials in water and wastewater treatment: a review. J. Taiwan Inst. Chem. Eng. (2017)
69.
go back to reference Kar, S., Subramanian, M., Pal, A., Ghosh, A., Bindal, R., Prabhakar, S., et al.: Preparation, characterisation and performance evaluation of anti-biofouling property of carbon nanotube-polysulfone nanocomposite membranes. In: AIP Conference Proceedings: AIP, pp. 181–185 (2013) Kar, S., Subramanian, M., Pal, A., Ghosh, A., Bindal, R., Prabhakar, S., et al.: Preparation, characterisation and performance evaluation of anti-biofouling property of carbon nanotube-polysulfone nanocomposite membranes. In: AIP Conference Proceedings: AIP, pp. 181–185 (2013)
70.
go back to reference Corry, B.: Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751–759 (2011)CrossRef Corry, B.: Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751–759 (2011)CrossRef
71.
go back to reference Kong, H., Gao, C., Yan, D.: Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412–413 (2004)CrossRef Kong, H., Gao, C., Yan, D.: Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412–413 (2004)CrossRef
Metadata
Title
Disinfection
Authors
Bey Fen Leo
Nurul Akmal Che Lah
Mahendran Samykano
Thiruchelvi Pulingam
Swee-Seong Tang
Sayonthoni Das Tuhi
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-95603-9_7

Premium Partners