Skip to main content
Top
Published in: Glass and Ceramics 5-6/2017

09-09-2017

Dispersion Hardening of Composites in the System Aluminum Oxide and Cerium Cation Stabilized Tetragonal Zirconium Dioxide

Authors: L. I. Podzorova, A. A. Il’icheva, O. I. Pen’kova, N. A. Alad’ev, A. S. Baikin, A. A. Konovalov, E. S. Morokov

Published in: Glass and Ceramics | Issue 5-6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The production of composites based on nanopowders synthesized by the sol-gel method in the system aluminum oxide and tetragonal zirconium dioxide stabilized by cerium cations (Al2O3–[Ce–TZP]) is described. It is shown that modification of the compositions by calcium oxide promotes the formation of composites of a dispersion-hardening phase in the form of long-prismatic grains in the sintering process. The presence of this phase affects the increase of strength and resistance to brittle fracture of composites with a ZrO2 matrix and with an Al2O3 matrix. The strength in static bending of the composites reaches 1000 MPa and the cracking resistance K 1c increases to 11.0 MPa·m1/2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Here and below, content by weight, %.
 
Literature
1.
go back to reference V. Ya. Shevchenko and S. M. Barinov, Technical Ceramics [in Russian], Nauka, Moscow (1993). V. Ya. Shevchenko and S. M. Barinov, Technical Ceramics [in Russian], Nauka, Moscow (1993).
2.
go back to reference S. M. Barinov and V. Ya. Shevchenko, Strength of Technical Ceramics [in Russian], Nauka, Moscow (1996). S. M. Barinov and V. Ya. Shevchenko, Strength of Technical Ceramics [in Russian], Nauka, Moscow (1996).
3.
go back to reference A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S. S. Semenov, Ceramics for Machine Engineering [in Russian], Nauchtekhlittzdat, Moscow (2003). A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S. S. Semenov, Ceramics for Machine Engineering [in Russian], Nauchtekhlittzdat, Moscow (2003).
4.
go back to reference V. I. Putlyaev, “Modern bioceramic materials,” Sorovskii Obraz. Zh., 8(1), 44 – 50 (2004). V. I. Putlyaev, “Modern bioceramic materials,” Sorovskii Obraz. Zh., 8(1), 44 – 50 (2004).
5.
go back to reference V. S. Bakunov, A. V. Belyakov, E. S. Lukin, and Y. Sh. Shayakhmetov, Oxide Ceramics: Sintering and Creep [in Russian], RKhTU im. D. I. Mendeleeva, Moscow (2007). V. S. Bakunov, A. V. Belyakov, E. S. Lukin, and Y. Sh. Shayakhmetov, Oxide Ceramics: Sintering and Creep [in Russian], RKhTU im. D. I. Mendeleeva, Moscow (2007).
6.
go back to reference A. H. De Aza, J. Chevalier, G. Fantozzi, et al., “Crack growth resistance of alumina, zirconia toughened alumina ceramics for joint prostheses,” Biomaterials, 23(3), 937 – 945 (2002).CrossRef A. H. De Aza, J. Chevalier, G. Fantozzi, et al., “Crack growth resistance of alumina, zirconia toughened alumina ceramics for joint prostheses,” Biomaterials, 23(3), 937 – 945 (2002).CrossRef
7.
go back to reference S. Kikkawa, A. Kijima, K. Hirota, and O. Yamamoto, “Crystal structure of zirconia prepared with alumina by coprecipatation preparation method,” J. Am. Ceram. Soc., 85(3), 721 – 723 (2002).CrossRef S. Kikkawa, A. Kijima, K. Hirota, and O. Yamamoto, “Crystal structure of zirconia prepared with alumina by coprecipatation preparation method,” J. Am. Ceram. Soc., 85(3), 721 – 723 (2002).CrossRef
8.
go back to reference S. J. Lee, S. Y. Chun, and C. H. Lee, “In situ fabrication of multicomponent ceramic composites by steric organic entrapment route,” J. Mater. Lett., 58, 2646 – 2649 (2004).CrossRef S. J. Lee, S. Y. Chun, and C. H. Lee, “In situ fabrication of multicomponent ceramic composites by steric organic entrapment route,” J. Mater. Lett., 58, 2646 – 2649 (2004).CrossRef
9.
go back to reference C. Piconi, G. Maccauro, and F. Muratori, “Alumina matrix composites in arthroplasty,” Key Eng. Mater., 284 – 286, 979 – 982 (2005).CrossRef C. Piconi, G. Maccauro, and F. Muratori, “Alumina matrix composites in arthroplasty,” Key Eng. Mater., 284 – 286, 979 – 982 (2005).CrossRef
10.
go back to reference L. I. Podzorova, A. A. Il’icheva, L. I. Shvorneva, et al., “Phase formation of nanosized precursors t-ZrO2–Al2O3 Ceramic microstructure and formation of microstructure of the ceramic on their basis,” Fiz. Khim. Stekla, 33(5), 703 – 709 (2007). L. I. Podzorova, A. A. Il’icheva, L. I. Shvorneva, et al., “Phase formation of nanosized precursors t-ZrO2–Al2O3 Ceramic microstructure and formation of microstructure of the ceramic on their basis,” Fiz. Khim. Stekla, 33(5), 703 – 709 (2007).
11.
go back to reference N. L. Savchenko, P. V. Korolev, A. G. Mel’nikov, et al., “Structure and mechanical properties of sintered composites based on ZrO2–Y2O3–Al2O3,” Fundam. Probl. Sovr. Materialoved., 5(1), 4 (2008). N. L. Savchenko, P. V. Korolev, A. G. Mel’nikov, et al., “Structure and mechanical properties of sintered composites based on ZrO2–Y2O3–Al2O3,” Fundam. Probl. Sovr. Materialoved., 5(1), 4 (2008).
12.
go back to reference G. Maccauro, R. Rossi, L. Raffaelli, and P. F. Manicone, “Alumina and zirconia ceramic for orthopaedic and dental devices,” in: R. Pignatello (ed.), Biomaterials Applications for Nanomedizine (2011), Pt. 458, pp. 299 – 308. G. Maccauro, R. Rossi, L. Raffaelli, and P. F. Manicone, “Alumina and zirconia ceramic for orthopaedic and dental devices,” in: R. Pignatello (ed.), Biomaterials Applications for Nanomedizine (2011), Pt. 458, pp. 299 – 308.
13.
go back to reference L. I. Podzorova, L. I. Shvorneva, A. A. Il’icheva, et al., “Microstructure and phase composition of the composites [ZrO2–CeO2]–[Al2O3] in the presence of modifiers MgO andY2O3,” Neorg. Mater., 49(4), 389 – 394 (2013).CrossRef L. I. Podzorova, L. I. Shvorneva, A. A. Il’icheva, et al., “Microstructure and phase composition of the composites [ZrO2–CeO2]–[Al2O3] in the presence of modifiers MgO andY2O3,” Neorg. Mater., 49(4), 389 – 394 (2013).CrossRef
14.
go back to reference L. L. Podzorova, A. A. Il’icheva, O. I. Pen’kova, et al., “Composites modified Al2O3-system (Ce–TZP) as a medical material,” Persp. Mater., No. 1, 32 – 38 (2016). L. L. Podzorova, A. A. Il’icheva, O. I. Pen’kova, et al., “Composites modified Al2O3-system (Ce–TZP) as a medical material,” Persp. Mater., No. 1, 32 – 38 (2016).
15.
go back to reference L. I. Podzorova. A. A. Il’icheva, O. I. Pen’kova, and L. I. Shvorneva, Composite Ceramic Material and Method of Obtaining It, RF Patent No. 2569113 C04B35/488 [in Russian], published October 26, 2015. L. I. Podzorova. A. A. Il’icheva, O. I. Pen’kova, and L. I. Shvorneva, Composite Ceramic Material and Method of Obtaining It, RF Patent No. 2569113 C04B35/488 [in Russian], published October 26, 2015.
16.
go back to reference D. N. Poluboyarinov and R. J. Popil’skii (eds.), Laboratory Manual on Technology of Ceramics and Refractories [in Russian], Stroiizdat, Moscow (1972), pp. 106 – 109. D. N. Poluboyarinov and R. J. Popil’skii (eds.), Laboratory Manual on Technology of Ceramics and Refractories [in Russian], Stroiizdat, Moscow (1972), pp. 106 – 109.
17.
go back to reference V. S. Bakunov and E. S. Lukin, “Particularities of the technology for producing high-density technical ceramics. Activity of oxide powders during sintering,” Steklo Keram., No. 11, 21 – 25 (2008); V. S. Bakunov and E. S. Lukin, “Particularities of the technology for producing high-density technical ceramics. Activity of oxide powders during sintering,” Glass Ceram., 65(11 – 12), 402 – 406 (2008). V. S. Bakunov and E. S. Lukin, “Particularities of the technology for producing high-density technical ceramics. Activity of oxide powders during sintering,” Steklo Keram., No. 11, 21 – 25 (2008); V. S. Bakunov and E. S. Lukin, “Particularities of the technology for producing high-density technical ceramics. Activity of oxide powders during sintering,” Glass Ceram., 65(11 – 12), 402 – 406 (2008).
Metadata
Title
Dispersion Hardening of Composites in the System Aluminum Oxide and Cerium Cation Stabilized Tetragonal Zirconium Dioxide
Authors
L. I. Podzorova
A. A. Il’icheva
O. I. Pen’kova
N. A. Alad’ev
A. S. Baikin
A. A. Konovalov
E. S. Morokov
Publication date
09-09-2017
Publisher
Springer US
Published in
Glass and Ceramics / Issue 5-6/2017
Print ISSN: 0361-7610
Electronic ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-017-9962-8

Other articles of this Issue 5-6/2017

Glass and Ceramics 5-6/2017 Go to the issue

Premium Partners