Skip to main content
Top

2014 | OriginalPaper | Chapter

23. Distributed Parameter System Modeling

Authors : Kentaro Takagi, Gou Nishida, Bernhard Maschke, Kinji Asaka

Published in: Soft Actuators

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses a distributed parameter system modeling of ionic polymer-metal composite actuators based on modified Yamaue’s electro-stress diffusion coupling model. The lowest order linear time invariant state equation with the spatial variable is derived to carry out the simulation. An introductory method for simulation based on the state space model is also shown. The results of the simulation demonstrate the effectiveness of the derived model by showing the differences of the responses for the different cation species.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bar-Cohen Y (ed) (2004) Electroactive polymer (eap) actuators as artificial muscles: reality, potential, and challenges. 2nd edn. SPIE Press, Washington Bar-Cohen Y (ed) (2004) Electroactive polymer (eap) actuators as artificial muscles: reality, potential, and challenges. 2nd edn. SPIE Press, Washington
2.
go back to reference Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites:I fundamentals. Smart Mater Struct 10:819–833CrossRef Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites:I fundamentals. Smart Mater Struct 10:819–833CrossRef
3.
go back to reference Mallavarapu K, Leo D (2001) Feedback control of the bending response of ionic polymer actuators. J Intell Mater Syst Struct 12:143–155CrossRef Mallavarapu K, Leo D (2001) Feedback control of the bending response of ionic polymer actuators. J Intell Mater Syst Struct 12:143–155CrossRef
4.
go back to reference Bao X, Bar-Cohen Y, Lih SS (2002) Measurements and macro models of ionomeric polymer-metal composites. Proc SPIE 4695:220–227CrossRef Bao X, Bar-Cohen Y, Lih SS (2002) Measurements and macro models of ionomeric polymer-metal composites. Proc SPIE 4695:220–227CrossRef
5.
go back to reference Newbury KM, Leo DJ (2003) Linear electromechanical model of ionic polymer transducers-part I: model development. J Intell Mater Syst Struct 14:333–342CrossRef Newbury KM, Leo DJ (2003) Linear electromechanical model of ionic polymer transducers-part I: model development. J Intell Mater Syst Struct 14:333–342CrossRef
6.
go back to reference Yamakita M, Kamamichi N, Kaneda Y, Asaka K, Luo ZW (2004) Development of an artificial muscle linear actuator using ionic polymer-metal composites. Adv Robot 18(4):383–399CrossRef Yamakita M, Kamamichi N, Kaneda Y, Asaka K, Luo ZW (2004) Development of an artificial muscle linear actuator using ionic polymer-metal composites. Adv Robot 18(4):383–399CrossRef
7.
go back to reference Chen Z, Tan X, Shahinpoor M (2005) Quasi-static positioning of ionic polymer-metal composite (IPMC) actuators. Proceedings of the 2005 IEEE/ASME international conference on advanced intelligent mechatronics, pp 60–65 Chen Z, Tan X, Shahinpoor M (2005) Quasi-static positioning of ionic polymer-metal composite (IPMC) actuators. Proceedings of the 2005 IEEE/ASME international conference on advanced intelligent mechatronics, pp 60–65
8.
go back to reference Kothera C, Leo D (2005) Bandwidth characterization in the micropositioning of ionic polymer actuators. J Intell Mater Syst Struct 16(1):3–13CrossRef Kothera C, Leo D (2005) Bandwidth characterization in the micropositioning of ionic polymer actuators. J Intell Mater Syst Struct 16(1):3–13CrossRef
9.
go back to reference Kang S, Shin J et al. (2007) Robust control of ionic polymer-metal composites. Smart Struct Mater 16:2457–2463CrossRef Kang S, Shin J et al. (2007) Robust control of ionic polymer-metal composites. Smart Struct Mater 16:2457–2463CrossRef
10.
go back to reference Chen Z, Tan X (2008) A scalable dynamic model of ionic polymer metal composite actuators. Proc SPIE 6927:69270ICrossRef Chen Z, Tan X (2008) A scalable dynamic model of ionic polymer metal composite actuators. Proc SPIE 6927:69270ICrossRef
11.
go back to reference Chen Z, Tan X (2008) A control-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans Mechatron 13(5):519–529CrossRef Chen Z, Tan X (2008) A control-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans Mechatron 13(5):519–529CrossRef
12.
go back to reference Yamakita M et al. (2008) Integrated design of an ionic polymer-metal composite actuator/sensor. Adv Robot 22:913–928CrossRef Yamakita M et al. (2008) Integrated design of an ionic polymer-metal composite actuator/sensor. Adv Robot 22:913–928CrossRef
13.
go back to reference Asaka K, Oguro K (2000) Bending of polyelectrolyte membrane platinum composites by electric stimuli part ii. response kinetics. J Electroanal Chem 480:186–198CrossRef Asaka K, Oguro K (2000) Bending of polyelectrolyte membrane platinum composites by electric stimuli part ii. response kinetics. J Electroanal Chem 480:186–198CrossRef
14.
go back to reference de Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518CrossRef de Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518CrossRef
15.
go back to reference Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87(7):3321–3331CrossRef Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87(7):3321–3331CrossRef
16.
go back to reference Tadokoro S, Yamagami S, Takamori T, Oguro K (2000) Modeling of nafion-Pt composite actuators (ICPF) by ionic motion. Proc SPIE 3987:262–272CrossRef Tadokoro S, Yamagami S, Takamori T, Oguro K (2000) Modeling of nafion-Pt composite actuators (ICPF) by ionic motion. Proc SPIE 3987:262–272CrossRef
17.
go back to reference Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38:1349–1356CrossRef Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38:1349–1356CrossRef
18.
go back to reference Wallmersperger T, Leo DJ, Kothera CS (2007) Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J Appl Phys 101:024912CrossRef Wallmersperger T, Leo DJ, Kothera CS (2007) Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J Appl Phys 101:024912CrossRef
19.
go back to reference Ljung L, Glad T (1994) Modeling of dynamic systems. Prentice Hall, Englewood Cliffs Ljung L, Glad T (1994) Modeling of dynamic systems. Prentice Hall, Englewood Cliffs
20.
go back to reference H. Khalil (2002) Nonlinear systems. 3rd Ed., Prentice Hall, Englewood Cliffs H. Khalil (2002) Nonlinear systems. 3rd Ed., Prentice Hall, Englewood Cliffs
21.
go back to reference van der Schaft A, Maschke B (2002) Hamiltonian formulation of distributed parameter systems with boundary energy flow. J Geom Phys 42:166–194CrossRef van der Schaft A, Maschke B (2002) Hamiltonian formulation of distributed parameter systems with boundary energy flow. J Geom Phys 42:166–194CrossRef
22.
go back to reference Macchelli A, Maschke B (2009) Infinite-dimensional port-hamiltonian systems. Modeling and control of complex physical systems–the port-hamiltonian approach. Springer, NewYork Macchelli A, Maschke B (2009) Infinite-dimensional port-hamiltonian systems. Modeling and control of complex physical systems–the port-hamiltonian approach. Springer, NewYork
23.
go back to reference Nishida G, Takagi K, Maschke B, Osada T (2011) Multi-scale distributed parameter system modeling of ionic polymer-metal composite soft actuator. Contr Eng Pract 19:321–334CrossRef Nishida G, Takagi K, Maschke B, Osada T (2011) Multi-scale distributed parameter system modeling of ionic polymer-metal composite soft actuator. Contr Eng Pract 19:321–334CrossRef
24.
go back to reference Osada T, Takagi K, Hayakawa Y, Luo ZW, Asaka K (2008) State space modeling of ionic polymer-metal composite actuators based on electrostress diffusion coupling theory. Proceedings of 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 119–124 Osada T, Takagi K, Hayakawa Y, Luo ZW, Asaka K (2008) State space modeling of ionic polymer-metal composite actuators based on electrostress diffusion coupling theory. Proceedings of 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 119–124
25.
go back to reference Takagi K, Osada T, Asaka K, Hayakawa Y, Luo ZW (2009) Distributed parameter system modeling of IPMC actuators with the electro-stress diffusion coupling theory. Proc SPIE 7287:72871QCrossRef Takagi K, Osada T, Asaka K, Hayakawa Y, Luo ZW (2009) Distributed parameter system modeling of IPMC actuators with the electro-stress diffusion coupling theory. Proc SPIE 7287:72871QCrossRef
26.
go back to reference Asaka K, Fujiwara N, Oguro K, Onishi K, Sewa S (2011) State of water and ionic conductivity of solid polymer electrolyte membranes in relation to polymer actuators. J Electroanal Chem 505:24–32CrossRef Asaka K, Fujiwara N, Oguro K, Onishi K, Sewa S (2011) State of water and ionic conductivity of solid polymer electrolyte membranes in relation to polymer actuators. J Electroanal Chem 505:24–32CrossRef
27.
go back to reference Takagi K, Nakabo Y, Luo ZW, Asaka K (2007) On a distributed parameter model for electrical impedance of ionic polymer. Proc SPIE 6524:652416CrossRef Takagi K, Nakabo Y, Luo ZW, Asaka K (2007) On a distributed parameter model for electrical impedance of ionic polymer. Proc SPIE 6524:652416CrossRef
28.
go back to reference Farinholt KM, Leo DJ (2005) Electrical impedance modeling of ionic polymer transducers. Proc SPIE 5761:69–80CrossRef Farinholt KM, Leo DJ (2005) Electrical impedance modeling of ionic polymer transducers. Proc SPIE 5761:69–80CrossRef
29.
go back to reference Takagi K, Jikuya I, Nishida G, Maschke B, Asaka K (2009) A study on the discretization of a distributed RC circuit model. Proceedings ICCAS-SICE 2009, pp 677–680 Takagi K, Jikuya I, Nishida G, Maschke B, Asaka K (2009) A study on the discretization of a distributed RC circuit model. Proceedings ICCAS-SICE 2009, pp 677–680
Metadata
Title
Distributed Parameter System Modeling
Authors
Kentaro Takagi
Gou Nishida
Bernhard Maschke
Kinji Asaka
Copyright Year
2014
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-54767-9_23

Premium Partners