Skip to main content

2014 | OriginalPaper | Buchkapitel

23. Distributed Parameter System Modeling

verfasst von : Kentaro Takagi, Gou Nishida, Bernhard Maschke, Kinji Asaka

Erschienen in: Soft Actuators

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter discusses a distributed parameter system modeling of ionic polymer-metal composite actuators based on modified Yamaue’s electro-stress diffusion coupling model. The lowest order linear time invariant state equation with the spatial variable is derived to carry out the simulation. An introductory method for simulation based on the state space model is also shown. The results of the simulation demonstrate the effectiveness of the derived model by showing the differences of the responses for the different cation species.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bar-Cohen Y (ed) (2004) Electroactive polymer (eap) actuators as artificial muscles: reality, potential, and challenges. 2nd edn. SPIE Press, Washington Bar-Cohen Y (ed) (2004) Electroactive polymer (eap) actuators as artificial muscles: reality, potential, and challenges. 2nd edn. SPIE Press, Washington
2.
Zurück zum Zitat Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites:I fundamentals. Smart Mater Struct 10:819–833CrossRef Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites:I fundamentals. Smart Mater Struct 10:819–833CrossRef
3.
Zurück zum Zitat Mallavarapu K, Leo D (2001) Feedback control of the bending response of ionic polymer actuators. J Intell Mater Syst Struct 12:143–155CrossRef Mallavarapu K, Leo D (2001) Feedback control of the bending response of ionic polymer actuators. J Intell Mater Syst Struct 12:143–155CrossRef
4.
Zurück zum Zitat Bao X, Bar-Cohen Y, Lih SS (2002) Measurements and macro models of ionomeric polymer-metal composites. Proc SPIE 4695:220–227CrossRef Bao X, Bar-Cohen Y, Lih SS (2002) Measurements and macro models of ionomeric polymer-metal composites. Proc SPIE 4695:220–227CrossRef
5.
Zurück zum Zitat Newbury KM, Leo DJ (2003) Linear electromechanical model of ionic polymer transducers-part I: model development. J Intell Mater Syst Struct 14:333–342CrossRef Newbury KM, Leo DJ (2003) Linear electromechanical model of ionic polymer transducers-part I: model development. J Intell Mater Syst Struct 14:333–342CrossRef
6.
Zurück zum Zitat Yamakita M, Kamamichi N, Kaneda Y, Asaka K, Luo ZW (2004) Development of an artificial muscle linear actuator using ionic polymer-metal composites. Adv Robot 18(4):383–399CrossRef Yamakita M, Kamamichi N, Kaneda Y, Asaka K, Luo ZW (2004) Development of an artificial muscle linear actuator using ionic polymer-metal composites. Adv Robot 18(4):383–399CrossRef
7.
Zurück zum Zitat Chen Z, Tan X, Shahinpoor M (2005) Quasi-static positioning of ionic polymer-metal composite (IPMC) actuators. Proceedings of the 2005 IEEE/ASME international conference on advanced intelligent mechatronics, pp 60–65 Chen Z, Tan X, Shahinpoor M (2005) Quasi-static positioning of ionic polymer-metal composite (IPMC) actuators. Proceedings of the 2005 IEEE/ASME international conference on advanced intelligent mechatronics, pp 60–65
8.
Zurück zum Zitat Kothera C, Leo D (2005) Bandwidth characterization in the micropositioning of ionic polymer actuators. J Intell Mater Syst Struct 16(1):3–13CrossRef Kothera C, Leo D (2005) Bandwidth characterization in the micropositioning of ionic polymer actuators. J Intell Mater Syst Struct 16(1):3–13CrossRef
9.
Zurück zum Zitat Kang S, Shin J et al. (2007) Robust control of ionic polymer-metal composites. Smart Struct Mater 16:2457–2463CrossRef Kang S, Shin J et al. (2007) Robust control of ionic polymer-metal composites. Smart Struct Mater 16:2457–2463CrossRef
10.
Zurück zum Zitat Chen Z, Tan X (2008) A scalable dynamic model of ionic polymer metal composite actuators. Proc SPIE 6927:69270ICrossRef Chen Z, Tan X (2008) A scalable dynamic model of ionic polymer metal composite actuators. Proc SPIE 6927:69270ICrossRef
11.
Zurück zum Zitat Chen Z, Tan X (2008) A control-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans Mechatron 13(5):519–529CrossRef Chen Z, Tan X (2008) A control-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans Mechatron 13(5):519–529CrossRef
12.
Zurück zum Zitat Yamakita M et al. (2008) Integrated design of an ionic polymer-metal composite actuator/sensor. Adv Robot 22:913–928CrossRef Yamakita M et al. (2008) Integrated design of an ionic polymer-metal composite actuator/sensor. Adv Robot 22:913–928CrossRef
13.
Zurück zum Zitat Asaka K, Oguro K (2000) Bending of polyelectrolyte membrane platinum composites by electric stimuli part ii. response kinetics. J Electroanal Chem 480:186–198CrossRef Asaka K, Oguro K (2000) Bending of polyelectrolyte membrane platinum composites by electric stimuli part ii. response kinetics. J Electroanal Chem 480:186–198CrossRef
14.
Zurück zum Zitat de Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518CrossRef de Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518CrossRef
15.
Zurück zum Zitat Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87(7):3321–3331CrossRef Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87(7):3321–3331CrossRef
16.
Zurück zum Zitat Tadokoro S, Yamagami S, Takamori T, Oguro K (2000) Modeling of nafion-Pt composite actuators (ICPF) by ionic motion. Proc SPIE 3987:262–272CrossRef Tadokoro S, Yamagami S, Takamori T, Oguro K (2000) Modeling of nafion-Pt composite actuators (ICPF) by ionic motion. Proc SPIE 3987:262–272CrossRef
17.
Zurück zum Zitat Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38:1349–1356CrossRef Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38:1349–1356CrossRef
18.
Zurück zum Zitat Wallmersperger T, Leo DJ, Kothera CS (2007) Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J Appl Phys 101:024912CrossRef Wallmersperger T, Leo DJ, Kothera CS (2007) Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J Appl Phys 101:024912CrossRef
19.
Zurück zum Zitat Ljung L, Glad T (1994) Modeling of dynamic systems. Prentice Hall, Englewood Cliffs Ljung L, Glad T (1994) Modeling of dynamic systems. Prentice Hall, Englewood Cliffs
20.
Zurück zum Zitat H. Khalil (2002) Nonlinear systems. 3rd Ed., Prentice Hall, Englewood Cliffs H. Khalil (2002) Nonlinear systems. 3rd Ed., Prentice Hall, Englewood Cliffs
21.
Zurück zum Zitat van der Schaft A, Maschke B (2002) Hamiltonian formulation of distributed parameter systems with boundary energy flow. J Geom Phys 42:166–194CrossRef van der Schaft A, Maschke B (2002) Hamiltonian formulation of distributed parameter systems with boundary energy flow. J Geom Phys 42:166–194CrossRef
22.
Zurück zum Zitat Macchelli A, Maschke B (2009) Infinite-dimensional port-hamiltonian systems. Modeling and control of complex physical systems–the port-hamiltonian approach. Springer, NewYork Macchelli A, Maschke B (2009) Infinite-dimensional port-hamiltonian systems. Modeling and control of complex physical systems–the port-hamiltonian approach. Springer, NewYork
23.
Zurück zum Zitat Nishida G, Takagi K, Maschke B, Osada T (2011) Multi-scale distributed parameter system modeling of ionic polymer-metal composite soft actuator. Contr Eng Pract 19:321–334CrossRef Nishida G, Takagi K, Maschke B, Osada T (2011) Multi-scale distributed parameter system modeling of ionic polymer-metal composite soft actuator. Contr Eng Pract 19:321–334CrossRef
24.
Zurück zum Zitat Osada T, Takagi K, Hayakawa Y, Luo ZW, Asaka K (2008) State space modeling of ionic polymer-metal composite actuators based on electrostress diffusion coupling theory. Proceedings of 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 119–124 Osada T, Takagi K, Hayakawa Y, Luo ZW, Asaka K (2008) State space modeling of ionic polymer-metal composite actuators based on electrostress diffusion coupling theory. Proceedings of 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 119–124
25.
Zurück zum Zitat Takagi K, Osada T, Asaka K, Hayakawa Y, Luo ZW (2009) Distributed parameter system modeling of IPMC actuators with the electro-stress diffusion coupling theory. Proc SPIE 7287:72871QCrossRef Takagi K, Osada T, Asaka K, Hayakawa Y, Luo ZW (2009) Distributed parameter system modeling of IPMC actuators with the electro-stress diffusion coupling theory. Proc SPIE 7287:72871QCrossRef
26.
Zurück zum Zitat Asaka K, Fujiwara N, Oguro K, Onishi K, Sewa S (2011) State of water and ionic conductivity of solid polymer electrolyte membranes in relation to polymer actuators. J Electroanal Chem 505:24–32CrossRef Asaka K, Fujiwara N, Oguro K, Onishi K, Sewa S (2011) State of water and ionic conductivity of solid polymer electrolyte membranes in relation to polymer actuators. J Electroanal Chem 505:24–32CrossRef
27.
Zurück zum Zitat Takagi K, Nakabo Y, Luo ZW, Asaka K (2007) On a distributed parameter model for electrical impedance of ionic polymer. Proc SPIE 6524:652416CrossRef Takagi K, Nakabo Y, Luo ZW, Asaka K (2007) On a distributed parameter model for electrical impedance of ionic polymer. Proc SPIE 6524:652416CrossRef
28.
Zurück zum Zitat Farinholt KM, Leo DJ (2005) Electrical impedance modeling of ionic polymer transducers. Proc SPIE 5761:69–80CrossRef Farinholt KM, Leo DJ (2005) Electrical impedance modeling of ionic polymer transducers. Proc SPIE 5761:69–80CrossRef
29.
Zurück zum Zitat Takagi K, Jikuya I, Nishida G, Maschke B, Asaka K (2009) A study on the discretization of a distributed RC circuit model. Proceedings ICCAS-SICE 2009, pp 677–680 Takagi K, Jikuya I, Nishida G, Maschke B, Asaka K (2009) A study on the discretization of a distributed RC circuit model. Proceedings ICCAS-SICE 2009, pp 677–680
Metadaten
Titel
Distributed Parameter System Modeling
verfasst von
Kentaro Takagi
Gou Nishida
Bernhard Maschke
Kinji Asaka
Copyright-Jahr
2014
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-54767-9_23

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.