Skip to main content

2014 | OriginalPaper | Buchkapitel

22. Material Modeling

verfasst von : Yutaka Toi

Erschienen in: Soft Actuators

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Attention has been focused on ionic conducting polymer-metal composites (IPMCs) as intelligent materials for artificial muscles and robotics for recent years. The two-dimensional finite element formulation based on the Galerkin method is conducted for the basic field equations governing electrochemical response of IPMC beams with two pairs of electrodes upon applied electric field. The three-dimensional finite element analysis is conducted for the deformation of IPMC beams due to water redistribution in the beams associated with the electrochemical response. Some numerical studies are carried out in order to show the validity of the present formulation. A computational modeling is also established for the electrochemical-poroelastic behavior of conducting polymers such as polypyrrole. The three-dimensional continuum modeling given by Della Santa et al. for the passive, poroelastic behavior of conducting polymers is extended to the formulation for the active, electrochemical-poroelastic formulation according to Onsager-like laws, which is combined with the one-dimensional equation for ionic transportation. The validity of the finite element formulation for these governing equations has been demonstrated by numerical studies for the passive and active responses of polypyrrole membranes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Uchida M et al (2002) SPIE conference on electroactive polymer actuators and devices, vol 4695, pp 57–66 Uchida M et al (2002) SPIE conference on electroactive polymer actuators and devices, vol 4695, pp 57–66
2.
Zurück zum Zitat Oguro K et al (1992) Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromach Soc 5:27–30 Oguro K et al (1992) Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromach Soc 5:27–30
3.
Zurück zum Zitat Kanno T et al (1996) Modeling of ICPF (Ionic Conducting Polymer Gel Film) actuator (1st report, fundamental characteristics and black-box modeling). Trans JSME Ser C 62(598):2299–2305CrossRef Kanno T et al (1996) Modeling of ICPF (Ionic Conducting Polymer Gel Film) actuator (1st report, fundamental characteristics and black-box modeling). Trans JSME Ser C 62(598):2299–2305CrossRef
4.
Zurück zum Zitat Shahinpoor M et al (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review. Mater Struct 7:R15–R30CrossRef Shahinpoor M et al (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review. Mater Struct 7:R15–R30CrossRef
5.
Zurück zum Zitat Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87(7):3321–3331CrossRef Nemat-Nasser S, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87(7):3321–3331CrossRef
6.
Zurück zum Zitat Tadokoro S et al (2000) An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses. In: Proceedings of the 2000 I.E. International conference on robotics and automation, San Francisco, pp 1340–1346 Tadokoro S et al (2000) An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses. In: Proceedings of the 2000 I.E. International conference on robotics and automation, San Francisco, pp 1340–1346
7.
Zurück zum Zitat Popovic S, Taya M (2001) 2001 Mechanics and materials summer conference, UCSD, San Diego Popovic S, Taya M (2001) 2001 Mechanics and materials summer conference, UCSD, San Diego
8.
Zurück zum Zitat Toi Y, Kang SS (2004) Finite element modeling of electrochemical-mechanical behaviors of ionic conducting polymer-metal composites. Trans JSME Ser A 70(689):9–16CrossRef Toi Y, Kang SS (2004) Finite element modeling of electrochemical-mechanical behaviors of ionic conducting polymer-metal composites. Trans JSME Ser A 70(689):9–16CrossRef
9.
Zurück zum Zitat Toi Y, Kang SS (2005) Finite element analysis of two-dimensional electrochemical-mechanical response of ionic conducting polymer-metal composite beams. Comput Struct 83:2573–2583CrossRef Toi Y, Kang SS (2005) Finite element analysis of two-dimensional electrochemical-mechanical response of ionic conducting polymer-metal composite beams. Comput Struct 83:2573–2583CrossRef
10.
Zurück zum Zitat Finlayson BA (1972) The method of weighted residuals and variational principles. Academic, New York Finlayson BA (1972) The method of weighted residuals and variational principles. Academic, New York
11.
Zurück zum Zitat Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer–metal composites. J Appl Phys 92(5):2899–2915CrossRef Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer–metal composites. J Appl Phys 92(5):2899–2915CrossRef
12.
Zurück zum Zitat Kang SS, Toi Y (2005) Finite element analysis of two-dimensional electrochemical-mechanical response of ionic conducting polymer actuators. Trans JSME Ser A 71(702):225–232CrossRef Kang SS, Toi Y (2005) Finite element analysis of two-dimensional electrochemical-mechanical response of ionic conducting polymer actuators. Trans JSME Ser A 71(702):225–232CrossRef
13.
Zurück zum Zitat Kang SS, Toi Y (2006) Finite element analysis of electrochemical-mechanical response of Flemion-based ionic conducting polymer actuators. Trans JSME Ser A 72(716):397–404CrossRef Kang SS, Toi Y (2006) Finite element analysis of electrochemical-mechanical response of Flemion-based ionic conducting polymer actuators. Trans JSME Ser A 72(716):397–404CrossRef
14.
Zurück zum Zitat Jung WS et al (2010) Computatioinal modeling of electrochemical-mechanical behaviors of Flemion-based actuators considering the effects of electro-osmosis and electrolysis. Comput Struct 88(15/16):938–948CrossRef Jung WS et al (2010) Computatioinal modeling of electrochemical-mechanical behaviors of Flemion-based actuators considering the effects of electro-osmosis and electrolysis. Comput Struct 88(15/16):938–948CrossRef
15.
Zurück zum Zitat Della Santa A et al (1997) Passive mechanical properties of polypyrrole films: a continuum, poroelastic model. Mater Sci Eng C5:101–109CrossRef Della Santa A et al (1997) Passive mechanical properties of polypyrrole films: a continuum, poroelastic model. Mater Sci Eng C5:101–109CrossRef
16.
Zurück zum Zitat Della Santa A et al (1997) Performance and work capacity of a polypyrrole conducting polymer linear actuator. Synth Met 90:93–100CrossRef Della Santa A et al (1997) Performance and work capacity of a polypyrrole conducting polymer linear actuator. Synth Met 90:93–100CrossRef
17.
Zurück zum Zitat Della Santa A et al (1997) Characterization and modelling of a conducting polymer muscle-like linear actuator. Smart Mater Struct 6:23–34CrossRef Della Santa A et al (1997) Characterization and modelling of a conducting polymer muscle-like linear actuator. Smart Mater Struct 6:23–34CrossRef
18.
Zurück zum Zitat Cortes MT, Moreno JC (2003) Artificial muscles based on conducting polymers. e-Polymers 41:1–42 Cortes MT, Moreno JC (2003) Artificial muscles based on conducting polymers. e-Polymers 41:1–42
19.
Zurück zum Zitat Hara S et al (2004) Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polym J 36(2):151–161CrossRef Hara S et al (2004) Artificial muscles based on polypyrrole actuators with large strain and stress induced electrically. Polym J 36(2):151–161CrossRef
20.
Zurück zum Zitat Toi Y, Jung WS (2006) Finite element modeling of electrochemical-poroelastic behaviors of conducting polymer films. Trans JSME Ser A 72(719):1065–1071CrossRef Toi Y, Jung WS (2006) Finite element modeling of electrochemical-poroelastic behaviors of conducting polymer films. Trans JSME Ser A 72(719):1065–1071CrossRef
21.
Zurück zum Zitat Toi Y, Jung WS (2007) Finite element modeling of electrochemical-poroelastic behaviors of conducting polymers. Comput Struct 85(19/20):1453–1460CrossRef Toi Y, Jung WS (2007) Finite element modeling of electrochemical-poroelastic behaviors of conducting polymers. Comput Struct 85(19/20):1453–1460CrossRef
22.
Zurück zum Zitat Biot MA (1954) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–185CrossRef Biot MA (1954) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–185CrossRef
23.
Zurück zum Zitat Katchalsky A, Curran PF (1967) Non-equilibrium thermodynamics in biophysics. Harvard University Press, Cambridge Katchalsky A, Curran PF (1967) Non-equilibrium thermodynamics in biophysics. Harvard University Press, Cambridge
24.
Zurück zum Zitat Alici G et al (2006) Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications. Sens Actuators A 126:396–404CrossRef Alici G et al (2006) Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications. Sens Actuators A 126:396–404CrossRef
25.
Zurück zum Zitat Metz P et al (2006) A finite element model for bending behaviour of conducting polymer electromechanical actuators. Sens Actuators A 130–131:1–11CrossRef Metz P et al (2006) A finite element model for bending behaviour of conducting polymer electromechanical actuators. Sens Actuators A 130–131:1–11CrossRef
26.
Zurück zum Zitat Alici G, Huynh NN (2006) Towards improving positioning accuracy of conducting polymer actuators. In: International workshop on advanced motion control, pp 478–483 Alici G, Huynh NN (2006) Towards improving positioning accuracy of conducting polymer actuators. In: International workshop on advanced motion control, pp 478–483
27.
Zurück zum Zitat Toi Y, Jung WS (2008) Computational modeling of electrochemical-poroelastic bending behaviors of conducting polymer (PPy) membranes. Trans JSME Ser A 74(740):513–519CrossRef Toi Y, Jung WS (2008) Computational modeling of electrochemical-poroelastic bending behaviors of conducting polymer (PPy) membranes. Trans JSME Ser A 74(740):513–519CrossRef
28.
Zurück zum Zitat Jung WS, Toi Y (2010) Finite element analysis of electrochemical-poroelastic behaviors of polyaniline fibers. Trans JSME Ser A 76(770):1263–1269 Jung WS, Toi Y (2010) Finite element analysis of electrochemical-poroelastic behaviors of polyaniline fibers. Trans JSME Ser A 76(770):1263–1269
Metadaten
Titel
Material Modeling
verfasst von
Yutaka Toi
Copyright-Jahr
2014
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-54767-9_22

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.