Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 6/2019

07-01-2019 | Research Paper

Distributed-parametric optimization approach for free-orientation of laminated shell structures with anisotropic materials

Authors: Yoshiaki Muramatsu, Masatoshi Shimoda

Published in: Structural and Multidisciplinary Optimization | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, we propose a distributed-parametric material orientation optimization method for the optimal design of laminated composite shell structures consisting of anisotropic materials. We consider the compliance as the objective function and minimize it under the state-equation constraint. The material orientation in all the layers is treated as the design variable. The optimal design problem is formulated as a distributed-parameter optimization problem based on the variational method, and the sensitivity function with respect to the material orientation variation is theoretically derived. The optimal orientation variations are determined using the H1 gradient method with Poisson’s equation, where the derived sensitivity function is applied as the fictitious internal heat generation under the Robin condition to reduce the objective function while maintaining a smooth material orientation. With the proposed method, we can conventionally obtain the arbitrary optimal distribution of the material orientations of all the layers of complicated large-scale shell structures like aircraft or automotive bodies without design variable parameterization. The optimal results of the design examples show that the proposed optimization method can effectively obtain the optimal distribution of the material orientation in laminated shell structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Azegami H, Wu ZC (1994) Domain optimization analysis in linear elastic problems: approach using traction method. Trans JSME Ser A 60(578):2312–2318CrossRef Azegami H, Wu ZC (1994) Domain optimization analysis in linear elastic problems: approach using traction method. Trans JSME Ser A 60(578):2312–2318CrossRef
go back to reference Azegami H, Kaizu S, Shimoda M, Katamine E (1997) Irregularity of shape optimization problems and an improvement technique. Comput Aided Optimum Des Struct V:309–326 Azegami H, Kaizu S, Shimoda M, Katamine E (1997) Irregularity of shape optimization problems and an improvement technique. Comput Aided Optimum Des Struct V:309–326
go back to reference Bruyneel M (2011) SFP-a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef Bruyneel M (2011) SFP-a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef
go back to reference Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114CrossRefMATH Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114CrossRefMATH
go back to reference Guanxin H, Hu W, Guangyao L (2016) An efficient reanalysis assisted optimization for variable-stiffness composite design by using path functions. Compos Struct 153:409–420CrossRef Guanxin H, Hu W, Guangyao L (2016) An efficient reanalysis assisted optimization for variable-stiffness composite design by using path functions. Compos Struct 153:409–420CrossRef
go back to reference Gürdal Z, Haftka RT, Hajela P (1999) Design and optimization of laminated composite materials. John Wiley & Sons Gürdal Z, Haftka RT, Hajela P (1999) Design and optimization of laminated composite materials. John Wiley & Sons
go back to reference Hammer VB, Bendsøe MP, Lipton R, Pedersen P (1997) Parametrization in laminate design for optimal compliance. Int J Solids Struct 34:415–434CrossRefMATH Hammer VB, Bendsøe MP, Lipton R, Pedersen P (1997) Parametrization in laminate design for optimal compliance. Int J Solids Struct 34:415–434CrossRefMATH
go back to reference Honda S, Igarashi T, Narita Y (2013) Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II. Compos Part B Eng 45(1):1071–1078CrossRef Honda S, Igarashi T, Narita Y (2013) Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II. Compos Part B Eng 45(1):1071–1078CrossRef
go back to reference Hyer MW, Lee HH (1991) The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Compos Struct 18(3):239–261CrossRef Hyer MW, Lee HH (1991) The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Compos Struct 18(3):239–261CrossRef
go back to reference Ikeya K, Shimoda M, Shi JX (2016) Objective free-form optimization for shape and thickness of shell structures. Compos Struct 135:262–275CrossRef Ikeya K, Shimoda M, Shi JX (2016) Objective free-form optimization for shape and thickness of shell structures. Compos Struct 135:262–275CrossRef
go back to reference Kim JS, Kim CG, Hong CS (1999) Optimal design of composite structures with ply drop using genetic algorithm and expert system shell. Compos Struct 46(2):171–187CrossRef Kim JS, Kim CG, Hong CS (1999) Optimal design of composite structures with ply drop using genetic algorithm and expert system shell. Compos Struct 46(2):171–187CrossRef
go back to reference Kiyono CY, Silva ECN, Reddy JN (2017) A novel fiber optimization method based on normal distribution function with continuously varying fiber path. Compos Struct 160(15):503–515CrossRef Kiyono CY, Silva ECN, Reddy JN (2017) A novel fiber optimization method based on normal distribution function with continuously varying fiber path. Compos Struct 160(15):503–515CrossRef
go back to reference Kogiso N, Watson LT, Gürdal Z, Haftka RT (1994) Genetic algorithms with local improvement for composite laminate design. Struct Optim 7:207–218CrossRef Kogiso N, Watson LT, Gürdal Z, Haftka RT (1994) Genetic algorithms with local improvement for composite laminate design. Struct Optim 7:207–218CrossRef
go back to reference Le RR, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31:951–956CrossRefMATH Le RR, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31:951–956CrossRefMATH
go back to reference Miki M (1985) Design of laminated fibrous composite plates with required flexural stiffness. ASTM STP 864:387–400 Miki M (1985) Design of laminated fibrous composite plates with required flexural stiffness. ASTM STP 864:387–400
go back to reference Nakayama H, Shimoda M (2016) Shape-topology optimization for designing shell structures, Proceedings of ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering Nakayama H, Shimoda M (2016) Shape-topology optimization for designing shell structures, Proceedings of ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering
go back to reference Nomura T, Dede EM, Matsumori T, Kawamoto A (2015) Simultaneous optimization of topology and orientation of anisotropic material using isoparametric projection method. Proceedings of the 11th WCSMO:7–12 Nomura T, Dede EM, Matsumori T, Kawamoto A (2015) Simultaneous optimization of topology and orientation of anisotropic material using isoparametric projection method. Proceedings of the 11th WCSMO:7–12
go back to reference Pederson P (1989) On optimal orientation of orthotropic materials. Struct Optim 1(2):101–106CrossRef Pederson P (1989) On optimal orientation of orthotropic materials. Struct Optim 1(2):101–106CrossRef
go back to reference Shimoda M, Liu Y (2014) A non-parametric free-form optimization method for shell structures. Struct Multidiscip Optim 50:409–423MathSciNetCrossRef Shimoda M, Liu Y (2014) A non-parametric free-form optimization method for shell structures. Struct Multidiscip Optim 50:409–423MathSciNetCrossRef
go back to reference Shimoda M, Yamane K (2015) A numerical form-finding method for the minimal surface of membrane structures. Struct Multidiscip Optim 51:333–345MathSciNetCrossRef Shimoda M, Yamane K (2015) A numerical form-finding method for the minimal surface of membrane structures. Struct Multidiscip Optim 51:333–345MathSciNetCrossRef
go back to reference Shimoda M, Azegami H, Sakurai T (1998) Traction method approach to optimal shape design problems, SAE 1997 Trans. J Passenger Cars 106:2355–2365 Shimoda M, Azegami H, Sakurai T (1998) Traction method approach to optimal shape design problems, SAE 1997 Trans. J Passenger Cars 106:2355–2365
go back to reference Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH
go back to reference Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318CrossRefMATH Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318CrossRefMATH
go back to reference Temmen H, Degenhardt R, Raible T (2006) Tailored fiber placement optimization tool. Proceedings of 25th international congress of the aeronautical sciences Temmen H, Degenhardt R, Raible T (2006) Tailored fiber placement optimization tool. Proceedings of 25th international congress of the aeronautical sciences
go back to reference Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62CrossRef Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62CrossRef
Metadata
Title
Distributed-parametric optimization approach for free-orientation of laminated shell structures with anisotropic materials
Authors
Yoshiaki Muramatsu
Masatoshi Shimoda
Publication date
07-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 6/2019
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-2163-4

Other articles of this Issue 6/2019

Structural and Multidisciplinary Optimization 6/2019 Go to the issue

Premium Partners