Skip to main content
Top
Published in: Foundations of Computational Mathematics 6/2016

01-12-2016

Do Orthogonal Polynomials Dream of Symmetric Curves?

Authors: A. Martínez-Finkelshtein, E. A. Rakhmanov

Published in: Foundations of Computational Mathematics | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The complex or non-Hermitian orthogonal polynomials with analytic weights are ubiquitous in several areas such as approximation theory, random matrix models, theoretical physics and in numerical analysis, to mention a few. Due to the freedom in the choice of the integration contour for such polynomials, the location of their zeros is a priori not clear. Nevertheless, numerical experiments, such as those presented in this paper, show that the zeros not simply cluster somewhere on the plane, but persistently choose to align on certain curves, and in a very regular fashion. The problem of the limit zero distribution for the non-Hermitian orthogonal polynomials is one of the central aspects of their theory. Several important results in this direction have been obtained, especially in the last 30 years, and describing them is one of the goals of the first parts of this paper. However, the general theory is far from being complete, and many natural questions remain unanswered or have only a partial explanation. Thus, the second motivation of this paper is to discuss some “mysterious” configurations of zeros of polynomials, defined by an orthogonality condition with respect to a sum of exponential functions on the plane, that appeared as a results of our numerical experiments. In this apparently simple situation the zeros of these orthogonal polynomials may exhibit different behaviors: for some of them we state the rigorous results, while others are presented as conjectures (apparently, within a reach of modern techniques). Finally, there are cases for which it is not yet clear how to explain our numerical results, and where we cannot go beyond an empirical discussion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The procedure used to compute these zeros numerically is briefly explained in Sect. 6.2.
 
2
As a referee pointed out, the configuration of Fig. 7, top right, could be formally considered as a limit case of what we describe in Theorem 6.1 below, where the S-property does play a role. Nevertheless, the situation is completely different here due to the existence of a string of zeros of the weight (6.6) along the imaginary axis. In fact, zeros of \(Q_n\), at least visually, are equally spaced on \(i{\mathbb {R}}\), following the distribution of zeros of \(w_n\) and not an equilibrium measure on an interval of \(i{\mathbb {R}}\).
 
3
Strictly speaking, even the situation when the components of the support of \(\vec {\lambda }\) are simple arcs with common endpoints is already interesting.
 
Literature
1.
go back to reference G. Álvarez, L. Martínez Alonso, and E. Medina. Determination of \(S\)-curves with applications to the theory of non-Hermitian orthogonal polynomials. J. Stat. Mech. Theory Exp., (6):P06006, 28, 2013. G. Álvarez, L. Martínez Alonso, and E. Medina. Determination of \(S\)-curves with applications to the theory of non-Hermitian orthogonal polynomials. J. Stat. Mech. Theory Exp., (6):P06006, 28, 2013.
2.
go back to reference G. Álvarez, L. Martínez Alonso, and E. Medina. Partition functions and the continuum limit in Penner matrix models. J. Phys. A, 47(31):315205, 29, 2014. G. Álvarez, L. Martínez Alonso, and E. Medina. Partition functions and the continuum limit in Penner matrix models. J. Phys. A, 47(31):315205, 29, 2014.
3.
go back to reference G. Álvarez, L. Martínez Alonso, and E. Medina. Fine structure in the large \(n\) limit of the non-Hermitian Penner matrix model. Ann. Physics, 361:440–460, 2015.MathSciNetCrossRef G. Álvarez, L. Martínez Alonso, and E. Medina. Fine structure in the large \(n\) limit of the non-Hermitian Penner matrix model. Ann. Physics, 361:440–460, 2015.MathSciNetCrossRef
4.
go back to reference A. I. Aptekarev. Strong asymptotics of polynomials of simultaneous orthogonality for Nikishin systems. Mat. Sb., 190(5):3–44, 1999.MathSciNetCrossRef A. I. Aptekarev. Strong asymptotics of polynomials of simultaneous orthogonality for Nikishin systems. Mat. Sb., 190(5):3–44, 1999.MathSciNetCrossRef
5.
go back to reference A. I. Aptekarev. Asymptotics of Hermite-Padé approximants for a pair of functions with branch points. Dokl. Akad. Nauk, 422(4):443–445, 2008.MathSciNet A. I. Aptekarev. Asymptotics of Hermite-Padé approximants for a pair of functions with branch points. Dokl. Akad. Nauk, 422(4):443–445, 2008.MathSciNet
6.
go back to reference A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkel shteĭn, and S. P. Suetin. Padé approximants, continued fractions, and orthogonal polynomials. Uspekhi Mat. Nauk, 66(6(402)):37–122, 2011. A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkel shteĭn, and S. P. Suetin. Padé approximants, continued fractions, and orthogonal polynomials. Uspekhi Mat. Nauk, 66(6(402)):37–122, 2011.
7.
go back to reference A. I. Aptekarev and A. B. È. Koĭèlaars. Hermite-Padé approximations and ensembles of multiple orthogonal polynomials. Uspekhi Mat. Nauk, 66(6(402)):123–190, 2011. A. I. Aptekarev and A. B. È. Koĭèlaars. Hermite-Padé approximations and ensembles of multiple orthogonal polynomials. Uspekhi Mat. Nauk, 66(6(402)):123–190, 2011.
8.
go back to reference A. I. Aptekarev, G. Lopes Lagomasino, and I. A. Rocha. Asymptotic behavior of the ratio of Hermite-Padé polynomials for Nikishin systems. Mat. Sb., 196(8):3–20, 2005.MathSciNetCrossRef A. I. Aptekarev, G. Lopes Lagomasino, and I. A. Rocha. Asymptotic behavior of the ratio of Hermite-Padé polynomials for Nikishin systems. Mat. Sb., 196(8):3–20, 2005.MathSciNetCrossRef
9.
go back to reference A. I. Aptekarev and H. Stahl. Asymptotics of Hermite-Padé polynomials. In Progress in approximation theory (Tampa, FL, 1990), volume 19 of Springer Ser. Comput. Math., pages 127–167. Springer, New York, 1992. A. I. Aptekarev and H. Stahl. Asymptotics of Hermite-Padé polynomials. In Progress in approximation theory (Tampa, FL, 1990), volume 19 of Springer Ser. Comput. Math., pages 127–167. Springer, New York, 1992.
10.
go back to reference A. I. Aptekarev and M. L. Yattselev. Padé approximants for functions with branch points – strong asymptotics of Nuttall-Stahl polynomials. arXiv:1109.0332, 2011. A. I. Aptekarev and M. L. Yattselev. Padé approximants for functions with branch points – strong asymptotics of Nuttall-Stahl polynomials. arXiv:​1109.​0332, 2011.
11.
go back to reference J. Baik, T. Kriecherbauer, K. D. T.-R. McLaughlin, and P. D. Miller. Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results. Int. Math. Res. Not., (15):821–858, 2003.MathSciNetCrossRefMATH J. Baik, T. Kriecherbauer, K. D. T.-R. McLaughlin, and P. D. Miller. Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results. Int. Math. Res. Not., (15):821–858, 2003.MathSciNetCrossRefMATH
12.
go back to reference J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller. Discrete orthogonal polynomials, volume 164 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2007. Asymptotics and applications. J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller. Discrete orthogonal polynomials, volume 164 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2007. Asymptotics and applications.
13.
go back to reference George A. Baker, Jr. and P. Graves-Morris. Padé approximants, volume 59 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1996. George A. Baker, Jr. and P. Graves-Morris. Padé approximants, volume 59 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1996.
14.
go back to reference F. Balogh, M. Bertola, and T. Bothner. Hankel determinant approach to generalized Vorob’ev-Yablonski polynomials and their roots. Preprint arXiv:1504.00440. F. Balogh, M. Bertola, and T. Bothner. Hankel determinant approach to generalized Vorob’ev-Yablonski polynomials and their roots. Preprint arXiv:​1504.​00440.
15.
go back to reference L. Baratchart, R. Küstner, and V. Totik. Zero distributions via orthogonality. Ann. Inst. Fourier (Grenoble), 55(5):1455–1499, 2005.MathSciNetCrossRefMATH L. Baratchart, R. Küstner, and V. Totik. Zero distributions via orthogonality. Ann. Inst. Fourier (Grenoble), 55(5):1455–1499, 2005.MathSciNetCrossRefMATH
16.
go back to reference L. Baratchart, H. Stahl, and M. Yattselev. Weighted extremal domains and best rational approximation. Adv. Math., 229(1):357–407, 2012.MathSciNetCrossRefMATH L. Baratchart, H. Stahl, and M. Yattselev. Weighted extremal domains and best rational approximation. Adv. Math., 229(1):357–407, 2012.MathSciNetCrossRefMATH
17.
go back to reference L. Baratchart, and M. Yattselev. Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights. Int. Math. Res. Not. IMRN no. 22, 4211–4275, 2010. L. Baratchart, and M. Yattselev. Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights. Int. Math. Res. Not. IMRN no. 22, 4211–4275, 2010.
18.
go back to reference M. Bertola and T. Bothner. Zeros of large degree Vorob’ev-Yablonski polynomials via a Hankel determinant identity. Preprint arXiv:1401.1408. M. Bertola and T. Bothner. Zeros of large degree Vorob’ev-Yablonski polynomials via a Hankel determinant identity. Preprint arXiv:​1401.​1408.
19.
20.
go back to reference P. M. Bleher and A. Deaño. Topological expansion in the cubic random matrix model. Int. Math. Res. Not. IMRN, (12):2699–2755, 2013.MathSciNetMATH P. M. Bleher and A. Deaño. Topological expansion in the cubic random matrix model. Int. Math. Res. Not. IMRN, (12):2699–2755, 2013.MathSciNetMATH
21.
go back to reference A. Deaño, A. B. J. Kuijlaars, and P. Román. Asymptotic behavior and zero distribution of polynomials orthogonal with respect to Bessel functions. Preprint arXiv:1406.0969. A. Deaño, A. B. J. Kuijlaars, and P. Román. Asymptotic behavior and zero distribution of polynomials orthogonal with respect to Bessel functions. Preprint arXiv:​1406.​0969.
22.
go back to reference A. Deaño, D. Huybrechs, and A. B. J. Kuijlaars. Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature. J. Approx. Theory, 162(12):2202–2224, 2010.MathSciNetCrossRefMATH A. Deaño, D. Huybrechs, and A. B. J. Kuijlaars. Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature. J. Approx. Theory, 162(12):2202–2224, 2010.MathSciNetCrossRefMATH
23.
go back to reference P. A. Deift. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. New York University Courant Institute of Mathematical Sciences, New York, 1999. P. A. Deift. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. New York University Courant Institute of Mathematical Sciences, New York, 1999.
24.
go back to reference P. Dragnev and E. B. Saff. Constrained energy problems with applications to orthogonal polynomials of a discrete variable. J. d’Analyse Mathématique, 72:229–265, 1997.MathSciNetCrossRefMATH P. Dragnev and E. B. Saff. Constrained energy problems with applications to orthogonal polynomials of a discrete variable. J. d’Analyse Mathématique, 72:229–265, 1997.MathSciNetCrossRefMATH
25.
go back to reference J. Faldey and W. Gawronski. On the limit distributions of the zeros of Jonquière polynomials and generalized classical orthogonal polynomials. Journal of Approximation Theory, 81(2):231–249, 1995.MathSciNetCrossRefMATH J. Faldey and W. Gawronski. On the limit distributions of the zeros of Jonquière polynomials and generalized classical orthogonal polynomials. Journal of Approximation Theory, 81(2):231–249, 1995.MathSciNetCrossRefMATH
26.
go back to reference W. Gautschi. Orthogonal polynomials: Applications and computation. Acta Numerica, pages 45–119, 1996. W. Gautschi. Orthogonal polynomials: Applications and computation. Acta Numerica, pages 45–119, 1996.
27.
go back to reference A. A. Gončar. The convergence of Padé approximations. Mat. Sb. (N.S.), 92(134):152–164, 167, 1973. A. A. Gončar. The convergence of Padé approximations. Mat. Sb. (N.S.), 92(134):152–164, 167, 1973.
28.
go back to reference A. A. Gonchar. On convergence of Padé approximants for some classes of meromorphic functions. Math. USSR Sbornik, 26(4):555–575, 1975.CrossRefMATH A. A. Gonchar. On convergence of Padé approximants for some classes of meromorphic functions. Math. USSR Sbornik, 26(4):555–575, 1975.CrossRefMATH
29.
go back to reference A. A. Gonchar and E. A. Rakhmanov. On the convergence of simultaneous Padé approximants for systems of functions of Markov type. Trudy Mat. Inst. Steklov., 157:31–48, 234, 1981. Number theory, mathematical analysis and their applications. A. A. Gonchar and E. A. Rakhmanov. On the convergence of simultaneous Padé approximants for systems of functions of Markov type. Trudy Mat. Inst. Steklov., 157:31–48, 234, 1981. Number theory, mathematical analysis and their applications.
30.
go back to reference A. A. Gonchar and E. A. Rakhmanov. Equilibrium measure and the distribution of zeros of extremal polynomials. Mat. Sbornik, 125(2):117–127, 1984. translation from Mat. Sb., Nov. Ser. 134(176), No.3(11), 306–352 (1987). A. A. Gonchar and E. A. Rakhmanov. Equilibrium measure and the distribution of zeros of extremal polynomials. Mat. Sbornik, 125(2):117–127, 1984. translation from Mat. Sb., Nov. Ser. 134(176), No.3(11), 306–352 (1987).
31.
go back to reference A. A. Gonchar and E. A. Rakhmanov. The equilibrium problem for vector potentials. Uspekhi Mat. Nauk, 40(4(244)):155–156, 1985. A. A. Gonchar and E. A. Rakhmanov. The equilibrium problem for vector potentials. Uspekhi Mat. Nauk, 40(4(244)):155–156, 1985.
32.
go back to reference A. A. Gonchar and E. A. Rakhmanov. Equilibrium distributions and degree of rational approximation of analytic functions. Math. USSR Sbornik, 62(2):305–348, 1987. translation from Mat. Sb., Nov. Ser. 134(176), No.3(11), 306–352 (1987). A. A. Gonchar and E. A. Rakhmanov. Equilibrium distributions and degree of rational approximation of analytic functions. Math. USSR Sbornik, 62(2):305–348, 1987. translation from Mat. Sb., Nov. Ser. 134(176), No.3(11), 306–352 (1987).
33.
go back to reference A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin. On Hermite-Padé approximants for systems of functions of Markov type. Mat. Sb., 188(5):33–58, 1997.MathSciNetCrossRefMATH A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin. On Hermite-Padé approximants for systems of functions of Markov type. Mat. Sb., 188(5):33–58, 1997.MathSciNetCrossRefMATH
34.
go back to reference E. Heine. Handbuch der Kugelfunctionen, volume II. G. Reimer, Berlin, \(2\)nd. edition, 1878. E. Heine. Handbuch der Kugelfunctionen, volume II. G. Reimer, Berlin, \(2\)nd. edition, 1878.
35.
go back to reference S. Kamvissis and E. A. Rakhmanov. Existence and regularity for an energy maximization problem in two dimensions. J. Math. Phys., 46(8):083505, 24, 2005. S. Kamvissis and E. A. Rakhmanov. Existence and regularity for an energy maximization problem in two dimensions. J. Math. Phys., 46(8):083505, 24, 2005.
36.
go back to reference A. B. J. Kuijlaars and A. Martínez-Finkelshtein. Strong asymptotics for Jacobi polynomials with varying nonstandard parameters. J. Anal. Math., 94:195–234, 2004.MathSciNetCrossRefMATH A. B. J. Kuijlaars and A. Martínez-Finkelshtein. Strong asymptotics for Jacobi polynomials with varying nonstandard parameters. J. Anal. Math., 94:195–234, 2004.MathSciNetCrossRefMATH
37.
go back to reference A. B. J. Kuijlaars and G. L. F. Silva. S-curves in polynomial external fields. J. Approximation Theory, 191:1–37, 2015.MathSciNetCrossRefMATH A. B. J. Kuijlaars and G. L. F. Silva. S-curves in polynomial external fields. J. Approximation Theory, 191:1–37, 2015.MathSciNetCrossRefMATH
38.
go back to reference G. López Lagomasino and A. Ribalta. Approximation of transfer functions of unstable infinite dimensional control systems by rational interpolants with prescribed poles. In Proceedings of the International Conference on Rational Approximation, ICRA99 (Antwerp), volume 61, pages 267–294, 2000. G. López Lagomasino and A. Ribalta. Approximation of transfer functions of unstable infinite dimensional control systems by rational interpolants with prescribed poles. In Proceedings of the International Conference on Rational Approximation, ICRA99 (Antwerp), volume 61, pages 267–294, 2000.
39.
go back to reference F. Marcellán, A. Martínez-Finkelshtein, and P. Martínez-González. Electrostatic models for zeros of polynomials: old, new, and some open problems. J. Comput. Appl. Math., 207(2):258–272, 2007.MathSciNetCrossRefMATH F. Marcellán, A. Martínez-Finkelshtein, and P. Martínez-González. Electrostatic models for zeros of polynomials: old, new, and some open problems. J. Comput. Appl. Math., 207(2):258–272, 2007.MathSciNetCrossRefMATH
40.
go back to reference A. Martines-Finkel shteĭn, E. A. Rakhmanov, and S. P. Suetin. Differential equations for Hermite-Padé polynomials. Uspekhi Mat. Nauk, 68(1(409)):197–198, 2013. translation in Russian Math. Surveys 68 (2013), no. 1, 183–185. A. Martines-Finkel shteĭn, E. A. Rakhmanov, and S. P. Suetin. Differential equations for Hermite-Padé polynomials. Uspekhi Mat. Nauk, 68(1(409)):197–198, 2013. translation in Russian Math. Surveys 68 (2013), no. 1, 183–185.
41.
go back to reference A. Martínez-Finkelshtein, P. Martínez-González, and R. Orive. Zeros of Jacobi polynomials with varying non-classical parameters. In Special functions (Hong Kong, 1999), pages 98–113. World Sci. Publ., River Edge, NJ, 2000. A. Martínez-Finkelshtein, P. Martínez-González, and R. Orive. Zeros of Jacobi polynomials with varying non-classical parameters. In Special functions (Hong Kong, 1999), pages 98–113. World Sci. Publ., River Edge, NJ, 2000.
42.
go back to reference A. Martínez-Finkelshtein and R. Orive. Riemann-Hilbert analysis of Jacobi polynomials orthogonal on a single contour. J. Approx. Theory, 134(2):137–170, 2005.MathSciNetCrossRefMATH A. Martínez-Finkelshtein and R. Orive. Riemann-Hilbert analysis of Jacobi polynomials orthogonal on a single contour. J. Approx. Theory, 134(2):137–170, 2005.MathSciNetCrossRefMATH
43.
go back to reference A. Martínez-Finkelshtein and E. A. Rakhmanov. Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials. Comm. Math. Phys., 302(1):53–111, 2011.MathSciNetCrossRefMATH A. Martínez-Finkelshtein and E. A. Rakhmanov. Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials. Comm. Math. Phys., 302(1):53–111, 2011.MathSciNetCrossRefMATH
44.
go back to reference A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet. Trajectories of quadratic differentials for Jacobi polynomials with complex parameters. Preprint arXiv:1506.03434, to appear in Comput. Methods and Funct. Theory, 2015. A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet. Trajectories of quadratic differentials for Jacobi polynomials with complex parameters. Preprint arXiv:​1506.​03434, to appear in Comput. Methods and Funct. Theory, 2015.
45.
go back to reference A. Martínez-Finkelshtein and E. A. Rakhmanov. On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials. In Recent trends in orthogonal polynomials and approximation theory, volume 507 of Contemp. Math., pages 209–232. Amer. Math. Soc., Providence, RI, 2010. A. Martínez-Finkelshtein and E. A. Rakhmanov. On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials. In Recent trends in orthogonal polynomials and approximation theory, volume 507 of Contemp. Math., pages 209–232. Amer. Math. Soc., Providence, RI, 2010.
46.
go back to reference A. Martínez-Finkelshtein, E. A. Rakhmanov, and S. P. Suetin. Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall’s work 25 years later. In Recent advances in orthogonal polynomials, special functions, and their applications, volume 578 of Contemp. Math., pages 165–193. Amer. Math. Soc., Providence, RI, 2012. A. Martínez-Finkelshtein, E. A. Rakhmanov, and S. P. Suetin. Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall’s work 25 years later. In Recent advances in orthogonal polynomials, special functions, and their applications, volume 578 of Contemp. Math., pages 165–193. Amer. Math. Soc., Providence, RI, 2012.
47.
go back to reference A. Martínez-Finkelshtein and G. L. F. Silva. Critical measures for vector energy: global structure of trajectories of quadratic differentials. Preprint arXiv:1509.06704. A. Martínez-Finkelshtein and G. L. F. Silva. Critical measures for vector energy: global structure of trajectories of quadratic differentials. Preprint arXiv:​1509.​06704.
48.
go back to reference A. Máté, P. Nevai, and V. Totik. Extensions of Szegő’s theory of orthogonal polynomials. II, III. Constr. Approx., 3(1):51–72, 73–96, 1987. A. Máté, P. Nevai, and V. Totik. Extensions of Szegő’s theory of orthogonal polynomials. II, III. Constr. Approx., 3(1):51–72, 73–96, 1987.
49.
go back to reference A. Máté, P. Nevai, and V. Totik. Strong and weak convergence of orthogonal polynomials. Amer. J. Math., 109(2):239–281, 1987.MathSciNetCrossRefMATH A. Máté, P. Nevai, and V. Totik. Strong and weak convergence of orthogonal polynomials. Amer. J. Math., 109(2):239–281, 1987.MathSciNetCrossRefMATH
50.
go back to reference E. M. Nikishin and V. N. Sorokin. Rational approximations and orthogonality, volume 92 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Ralph P. Boas. E. M. Nikishin and V. N. Sorokin. Rational approximations and orthogonality, volume 92 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Ralph P. Boas.
51.
go back to reference J. Nuttall. The convergence of Padé approximants to functions with branch points. In Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976), pages 101–109. Academic Press, New York, 1977. J. Nuttall. The convergence of Padé approximants to functions with branch points. In Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976), pages 101–109. Academic Press, New York, 1977.
54.
go back to reference J. Nuttall and S. R. Singh. Orthogonal polynomials and Padé approximants associated with a system of arcs. J. Approx. Theory, 21(1):1–42, 1977.MathSciNetCrossRefMATH J. Nuttall and S. R. Singh. Orthogonal polynomials and Padé approximants associated with a system of arcs. J. Approx. Theory, 21(1):1–42, 1977.MathSciNetCrossRefMATH
55.
go back to reference Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors. NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors. NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX).
56.
go back to reference O. Perron. Die Lehre von den Kettenbrüchen. Chelsea Publishing Co., New York, N. Y., 2nd. edition, 1950. O. Perron. Die Lehre von den Kettenbrüchen. Chelsea Publishing Co., New York, N. Y., 2nd. edition, 1950.
57.
go back to reference E. A. Rakhmanov. Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable. Sb. Math., 187:1213–1228, 1996.MathSciNetCrossRefMATH E. A. Rakhmanov. Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable. Sb. Math., 187:1213–1228, 1996.MathSciNetCrossRefMATH
58.
59.
go back to reference E. A. Rakhmanov. Orthogonal polynomials and \(S\)-curves. In Recent advances in orthogonal polynomials, special functions, and their applications, volume 578 of Contemp. Math., pages 195–239. Amer. Math. Soc., Providence, RI, 2012. E. A. Rakhmanov. Orthogonal polynomials and \(S\)-curves. In Recent advances in orthogonal polynomials, special functions, and their applications, volume 578 of Contemp. Math., pages 195–239. Amer. Math. Soc., Providence, RI, 2012.
60.
go back to reference E. A. Rakhmanov and E. A. Perevozhnikova. Variations of the equilibrium energy and \({S}\)-property of compacta of minimal capacity. Preprint, 1994. E. A. Rakhmanov and E. A. Perevozhnikova. Variations of the equilibrium energy and \({S}\)-property of compacta of minimal capacity. Preprint, 1994.
61.
go back to reference A. Ronveaux, editor. Heun’s differential equations. The Clarendon Press Oxford University Press, New York, 1995. With contributions by F. M. Arscott, S. Yu. Slavyanov, D. Schmidt, G. Wolf, P. Maroni and A. Duval. A. Ronveaux, editor. Heun’s differential equations. The Clarendon Press Oxford University Press, New York, 1995. With contributions by F. M. Arscott, S. Yu. Slavyanov, D. Schmidt, G. Wolf, P. Maroni and A. Duval.
62.
go back to reference E. B. Saff and V. Totik. Logarithmic Potentials with External Fields, volume 316 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1997. E. B. Saff and V. Totik. Logarithmic Potentials with External Fields, volume 316 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1997.
63.
go back to reference E. B. Saff, J. L. Ullman, and R. S. Varga. Incomplete polynomials: an electrostatics approach. In Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), pages 769–782. Academic Press, New York, 1980. E. B. Saff, J. L. Ullman, and R. S. Varga. Incomplete polynomials: an electrostatics approach. In Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), pages 769–782. Academic Press, New York, 1980.
64.
go back to reference J. F. Sánchez-Lara. Local behavior of the equilibrium measure under an external field non differentiable at a point. J. Approx. Theory, 187:1–17, 2014.MathSciNetCrossRefMATH J. F. Sánchez-Lara. Local behavior of the equilibrium measure under an external field non differentiable at a point. J. Approx. Theory, 187:1–17, 2014.MathSciNetCrossRefMATH
66.
go back to reference H. Stahl. Extremal domains associated with an analytic function. I, II. Complex Variables Theory Appl., 4(4):311–324, 325–338, 1985. H. Stahl. Extremal domains associated with an analytic function. I, II. Complex Variables Theory Appl., 4(4):311–324, 325–338, 1985.
67.
go back to reference H. Stahl. On the divergence of certain Padé approximant and the behaviour of the associated orthogonal polynomials. In Orthogonal polynomials and applications (Bar-le-Duc, 1984), volume 1171 of Lecture Notes in Math., pages 321–330. Springer, Berlin, 1985. H. Stahl. On the divergence of certain Padé approximant and the behaviour of the associated orthogonal polynomials. In Orthogonal polynomials and applications (Bar-le-Duc, 1984), volume 1171 of Lecture Notes in Math., pages 321–330. Springer, Berlin, 1985.
68.
go back to reference H. Stahl. Orthogonal polynomials with complex-valued weight function. I, II. Constr. Approx., 2(3):225–240, 241–251, 1986. H. Stahl. Orthogonal polynomials with complex-valued weight function. I, II. Constr. Approx., 2(3):225–240, 241–251, 1986.
69.
go back to reference H. Stahl. Asymptotics of Hermite-Padé polynomials and related convergence results—a summary of results. In Nonlinear numerical methods and rational approximation (Wilrijk, 1987), volume 43 of Math. Appl., pages 23–53. Reidel, Dordrecht, 1988. H. Stahl. Asymptotics of Hermite-Padé polynomials and related convergence results—a summary of results. In Nonlinear numerical methods and rational approximation (Wilrijk, 1987), volume 43 of Math. Appl., pages 23–53. Reidel, Dordrecht, 1988.
70.
72.
go back to reference H. Stahl and V. Totik. General orthogonal polynomials, volume 43 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992. H. Stahl and V. Totik. General orthogonal polynomials, volume 43 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.
73.
go back to reference T. J. Stieltjes. Sur certains polynômes que vérifient une équation différentielle linéaire du second ordre et sur la teorie des fonctions de Lamé. Acta Math., 6:321–326, 1885.MathSciNetCrossRef T. J. Stieltjes. Sur certains polynômes que vérifient une équation différentielle linéaire du second ordre et sur la teorie des fonctions de Lamé. Acta Math., 6:321–326, 1885.MathSciNetCrossRef
74.
go back to reference G. Szegő. Orthogonal Polynomials, volume 23 of Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Providence, RI, fourth edition, 1975. G. Szegő. Orthogonal Polynomials, volume 23 of Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Providence, RI, fourth edition, 1975.
75.
go back to reference W. Van Assche. Padé and Hermite-Padé approximation and orthogonality. Surv. Approx. Theory, 2:61–91, 2006.MathSciNetMATH W. Van Assche. Padé and Hermite-Padé approximation and orthogonality. Surv. Approx. Theory, 2:61–91, 2006.MathSciNetMATH
76.
go back to reference H. Volkmer. Multiparameter eigenvalue problems and expansion theorems. Lecture Notes Math., 1356:vi+157, 1988. H. Volkmer. Multiparameter eigenvalue problems and expansion theorems. Lecture Notes Math., 1356:vi+157, 1988.
Metadata
Title
Do Orthogonal Polynomials Dream of Symmetric Curves?
Authors
A. Martínez-Finkelshtein
E. A. Rakhmanov
Publication date
01-12-2016
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 6/2016
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-016-9313-0

Other articles of this Issue 6/2016

Foundations of Computational Mathematics 6/2016 Go to the issue

Preface

Preface

Premium Partner