Skip to main content
Top
Published in: Foundations of Computational Mathematics 6/2016

01-12-2016

High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates

Authors: Andrea Bonito, J. Manuel Cascón, Khamron Mekchay, Pedro Morin, Ricardo H. Nochetto

Published in: Foundations of Computational Mathematics | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a new AFEM for the Laplace–Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally \(W^1_\infty \) and piecewise in a suitable Besov class embedded in \(C^{1,\alpha }\) with \(\alpha \in (0,1]\). The idea is to have the surface sufficiently well resolved in \(W^1_\infty \) relative to the current resolution of the PDE in \(H^1\). This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in \(W^1_\infty \) and PDE error in \(H^1\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, 2003.
  2. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics. Wiley-Interscience [Wiley], New York, 2000.
  3. P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97(2) (2004), 219–268.MathSciNetView ArticleMATH
  4. P. Binev, W. Dahmen, R.A. DeVore and P. Petrushev, Approximation classes for adaptive methods, Serdica Math. J. 28(4) (2002), 391–416.MathSciNetMATH
  5. M.S. Birman and M. Solomyak, Piecewise-polynomial approximations of functions of the classes \(W_p^\alpha \), Mat. Sb. (N.S.) 73(115)(3) (1967), 331–355.
  6. A. Bonito, J.M. Cascón, P. Morin and R.H. Nochetto, AFEM for geometric PDE: the Laplace–Beltrami operator, in Analysis and Numerics of Partial Differential Equations, (F. Brezzi, P. Coli, U. Gianazza and G. Gilardi, eds.), Springer INdAM Ser., vol. 4, Springer, Milan, 2013, pp. 257–306.
  7. A. Bonito, R.A. DeVore and R.H. Nochetto, Adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Numer. Anal. 51(6) (2013), 3106–3134.MathSciNetView ArticleMATH
  8. A. Bonito and R.H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal. 48(2) (2010), 734–771.MathSciNetView ArticleMATH
  9. A. Bonito and J. Pasciak, Convergence analysis of variational and non-variational multigrid algorithm for the Laplace-Beltrami operator, Math. Comp. 81 (2012), 1263–1288.MathSciNetView ArticleMATH
  10. G. Bourdaud and W. Sickel, Composition operators on function spaces with fractional order of smoothness, in Harmonic Analysis and Nonlinear Partial Differential Equations, (T. Ozawa and M. Sugimoto, eds.), RIMS Kôkyûroku Bessatsu, B26, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 93–132.
  11. C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67(6) (2014), 1195–1253.MathSciNetView ArticleMATH
  12. J.M. Cascón, C. Kreuzer, R.H. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46(5) (2008), 2524–2550.MathSciNetView ArticleMATH
  13. J.M. Cascón and R.H. Nochetto, Quasioptimal cardinality of AFEM driven by nonresidual estimators, IMA J. Numer. Anal. 3 2(1) (2012), 1–29.
  14. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, vol. 4, North-Holland Publishing Co., Amsterdam, 1978.
  15. A. Cohen, W. Dahmen, I. Daubechies, and R.A. DeVore, Tree approximation and optimal encoding, Appl. Comput. Harmon. Anal. 11(2) (2001), 192–226.MathSciNetView ArticleMATH
  16. A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47(2) (2009), 805–827.MathSciNetView ArticleMATH
  17. A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45(1) (2007), 421–442.MathSciNetView ArticleMATH
  18. R.A. DeVore and G.G. Lorentz, Constructive Approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993.
  19. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33(3) (1996), 1106–1124.MathSciNetView ArticleMATH
  20. G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial Differential Equations and Calculus of Variations (S. Hildebrandt and R. Leis, eds.), Lecture Notes in Math., vol. 1357, Springer, Berlin, 1988 , pp. 142–155.
  21. T. Gantumur, Convergence rates of adaptive methods, Besov spaces, and multilevel approximation, arXiv:​1408.​3889.
  22. E.M. Garau and P. Morin, Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems, IMA J. Numer. Anal. 31(3) (2011), 914–946.MathSciNetView ArticleMATH
  23. F.D. Gaspoz and P. Morin, Approximation classes for adaptive higher order finite element approximation, Math. Comp. 83(289) (2014), 2127–2160.MathSciNetView ArticleMATH
  24. R. Kornhuber and H. Yserentant, Multigrid methods for discrete elliptic problems on triangular surfaces, Comput. Vis. Sci. 11(4-6) (2008), 251–257.MathSciNetView Article
  25. K. Mekchay, P. Morin and R. H. Nochetto, AFEM for the Laplace-Beltrami operator on graphs: design and conditional contraction property, Math. Comp. 80(274) (2011), 625–648.MathSciNetView ArticleMATH
  26. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38(2) (2000), 466–488.MathSciNetView ArticleMATH
  27. P. Morin, R.H. Nochetto and K.G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44(4) (2002), 631–658. Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38(2) (2000), 466–488].
  28. R.H. Nochetto, K.G. Siebert and A. Veeser, Theory of adaptive finite element methods: an introduction, in: Multiscale, Nonlinear and Adaptive Approximation (R. DeVore and A. Kunoth, eds.), Springer, Berlin, 2009, pp. 409–542.
  29. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54(190) (1990), 483–493.MathSciNetView ArticleMATH
  30. R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7(2) (2007), 245–269 .MathSciNetView ArticleMATH
  31. R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77(261) (2008), 227–241.MathSciNetView ArticleMATH
  32. H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Rev. Mat. Complut. 15(2) (2002), 475–524.MathSciNetView ArticleMATH
  33. A. Veeser, Approximating gradients with continuous piecewise polynomial functions, Found. Comput. Math. 16(3) (2016), 723–750.MathSciNetView ArticleMATH
  34. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Technique, Wiley-Teubner, Chichester, 1996.MATH
Metadata
Title
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates
Authors
Andrea Bonito
J. Manuel Cascón
Khamron Mekchay
Pedro Morin
Ricardo H. Nochetto
Publication date
01-12-2016
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 6/2016
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-016-9335-7

Other articles of this Issue 6/2016

Foundations of Computational Mathematics 6/2016 Go to the issue

Premium Partner