Skip to main content
Top

2011 | OriginalPaper | Chapter

15. Droplet Evaporation in the Non-continuum Regime

Author : E. J. Davis

Published in: Handbook of Atomization and Sprays

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

At low pressures, the evaporation rate of a droplet is not adequately described by the equations of continuum mechanics, that is, by mass diffusion and conduction heat transfer. When the mean free path of the evaporated molecules is large compared with the droplet radius, the kinetic theory of gases can be applied to determine the evaporation rate. In this limit, the free-molecule regime, it is assumed that the molecules have a Maxwell-Boltzmann distribution of molecular velocities. In the intermediate regime, the Knudsen regime, molecular collisions distort the Maxwell-Boltzmann distribution and reduce the rate of transport of the molecules leaving and arriving at the droplet surface. This chapter reviews the theory and measurements of droplet evaporation in the free-molecule and Knudsen regimes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. C. Maxwell: Diffusion. In Encyclopedia Britannica, 9th edn., Vol. 7, p. 214 (1878). J. C. Maxwell: Diffusion. In Encyclopedia Britannica, 9th edn., Vol. 7, p. 214 (1878).
2.
go back to reference E. J. Davis, G. Schweiger: The Airborne Microparticle, Springer, Heidelberg (2002). E. J. Davis, G. Schweiger: The Airborne Microparticle, Springer, Heidelberg (2002).
3.
go back to reference D. C. Taflin, S. H. Zhang, T. Allen, E. J. Davis: Measurement of droplet interfacial phenomena by light-scattering techniques, AIChE J. 34, 1320–1320 (1988).CrossRef D. C. Taflin, S. H. Zhang, T. Allen, E. J. Davis: Measurement of droplet interfacial phenomena by light-scattering techniques, AIChE J. 34, 1320–1320 (1988).CrossRef
4.
go back to reference E. J. Davis: A history and state-of-the-art of accommodation coefficients, Atmos. Res., 82, 561–578 (2006).CrossRef E. J. Davis: A history and state-of-the-art of accommodation coefficients, Atmos. Res., 82, 561–578 (2006).CrossRef
5.
go back to reference P. Davidovits, C. E. Kolb, L. R. Williams, J. T. Jayne, D. R. Worsnop: Mass accommodation and chemical reactions at gas-liquid interfaces, Chem. Rev. 106, 1323–1354 (2006).CrossRef P. Davidovits, C. E. Kolb, L. R. Williams, J. T. Jayne, D. R. Worsnop: Mass accommodation and chemical reactions at gas-liquid interfaces, Chem. Rev. 106, 1323–1354 (2006).CrossRef
6.
go back to reference P. M. Winkler, A. Vrtala, P. E. Wagner, M. Kulmala, K. E. J. Lehtinen, T. Vesala: Mass and thermal accommodation during gas-liquid condensation of water, Phys. Rev. Lett. 93, 075701-1-075701-4 (2004). P. M. Winkler, A. Vrtala, P. E. Wagner, M. Kulmala, K. E. J. Lehtinen, T. Vesala: Mass and thermal accommodation during gas-liquid condensation of water, Phys. Rev. Lett. 93, 075701-1-075701-4 (2004).
7.
go back to reference P. M. Winkler, A. Vrtala, R. Rudolf, P.E. Wagner, I. Riipinen, T. Vesala, K. E. J. Lehtinen, Y. Viisanen, M. Kulmala: Condensation of water vapor: experimental determination of mass and thermal accommodation coefficients. J. Geophys. Res. D: Atmos. 111, D19202 (2006). P. M. Winkler, A. Vrtala, R. Rudolf, P.E. Wagner, I. Riipinen, T. Vesala, K. E. J. Lehtinen, Y. Viisanen, M. Kulmala: Condensation of water vapor: experimental determination of mass and thermal accommodation coefficients. J. Geophys. Res. D: Atmos. 111, D19202 (2006).
8.
go back to reference M. Zientara, D. Jakubczyk, G. Derkachov, K. Kolwas, M. Kolwas: Determination of mass and thermal accommodation coefficients from evolution of evaporating water droplet, Proc. SPIE 5849, 162–165 (2005).CrossRef M. Zientara, D. Jakubczyk, G. Derkachov, K. Kolwas, M. Kolwas: Determination of mass and thermal accommodation coefficients from evolution of evaporating water droplet, Proc. SPIE 5849, 162–165 (2005).CrossRef
9.
go back to reference T. Tsuruta, G. Nagayama: Molecular dynamics studies on the condensation coefficient of water, J. Phys. Chem. B 108, 1736–1743 (2004).CrossRef T. Tsuruta, G. Nagayama: Molecular dynamics studies on the condensation coefficient of water, J. Phys. Chem. B 108, 1736–1743 (2004).CrossRef
10.
go back to reference J. Vieceli, M. Roeselova, D. J. Tobias: Accommodation coefficients for water vapor at the air/water interface, Chem. Phys. Lett. 393, 249–255 (2004).CrossRef J. Vieceli, M. Roeselova, D. J. Tobias: Accommodation coefficients for water vapor at the air/water interface, Chem. Phys. Lett. 393, 249–255 (2004).CrossRef
11.
go back to reference A. Morita, M. Sugiyama, H. Kameda, S. Koda, D. R. Hanson: Mass accommodation coefficient of water: molecular dynamics simulation and revised analysis of droplet train/flow reactor experiment, J. Phys. Chem. B 108, 9111–9120 (2004).CrossRef A. Morita, M. Sugiyama, H. Kameda, S. Koda, D. R. Hanson: Mass accommodation coefficient of water: molecular dynamics simulation and revised analysis of droplet train/flow reactor experiment, J. Phys. Chem. B 108, 9111–9120 (2004).CrossRef
12.
go back to reference N. A. Fuchs: Über die Verdampfungsgeschwindigkeit Kleiner Tröpfchen in Einer Gasatmosphäre, Phys. Z. Sowjet 6, 225–243 (1934). N. A. Fuchs: Über die Verdampfungsgeschwindigkeit Kleiner Tröpfchen in Einer Gasatmosphäre, Phys. Z. Sowjet 6, 225–243 (1934).
13.
go back to reference D. C. Sahni: The effect of a black sphere on the flux distribution in an infinite moderator, J. Nucl. Energy 20, 915–920 (1966). D. C. Sahni: The effect of a black sphere on the flux distribution in an infinite moderator, J. Nucl. Energy 20, 915–920 (1966).
14.
go back to reference N. A. Fuchs, A. G. Sutugin: Highly Dispersed Aerosols, Ann Arbor Science, Ann Arbor, MI (1970). N. A. Fuchs, A. G. Sutugin: Highly Dispersed Aerosols, Ann Arbor Science, Ann Arbor, MI (1970).
15.
go back to reference J. Jeans: The Dynamical Theory of Gases, Dover, New York (1954).MATH J. Jeans: The Dynamical Theory of Gases, Dover, New York (1954).MATH
16.
go back to reference S. K. Loyalka, S. A. Hamoodi, R. V. Tompson: Isothermal condensation on a spherical particle, Phys. Fluids 14, 358–362 (1989). S. K. Loyalka, S. A. Hamoodi, R. V. Tompson: Isothermal condensation on a spherical particle, Phys. Fluids 14, 358–362 (1989).
17.
go back to reference M. M. R. Williams, S. K. Loyalka: Aerosol Science Theory and Practice, Pergamon, Oxford (1991). M. M. R. Williams, S. K. Loyalka: Aerosol Science Theory and Practice, Pergamon, Oxford (1991).
18.
go back to reference A. K. Ray, A. J. Lee, H. L. Tilley: Direct measurements of evaporation rates of single droplets at large Knudsen numbers, Langmuir 4, 631–637 (1988).CrossRef A. K. Ray, A. J. Lee, H. L. Tilley: Direct measurements of evaporation rates of single droplets at large Knudsen numbers, Langmuir 4, 631–637 (1988).CrossRef
19.
go back to reference M. Sitarski, B. Nowakowski: Condensation rate of trace gas vapor on Knudsen aerosols from the solution of the Boltzmann equation, J. Colloid Interface Sci. 72, 113–122 (1979).CrossRef M. Sitarski, B. Nowakowski: Condensation rate of trace gas vapor on Knudsen aerosols from the solution of the Boltzmann equation, J. Colloid Interface Sci. 72, 113–122 (1979).CrossRef
20.
go back to reference H. Grad: On the kinetic theory of rarefied gas, Commun. Pure Appl. Math. 2, 331–407 (1949). H. Grad: On the kinetic theory of rarefied gas, Commun. Pure Appl. Math. 2, 331–407 (1949).
21.
go back to reference X. Qu, E. J. Davis: Droplet evaporation and condensation in the near-continuum regime, J. Aerosol Sci. 32:861–875 (2001).CrossRef X. Qu, E. J. Davis: Droplet evaporation and condensation in the near-continuum regime, J. Aerosol Sci. 32:861–875 (2001).CrossRef
22.
go back to reference B. Nowakowski, J. Popielawski: Nonisothermal condensation on spherical aerosol particles from the Grad solution of the Boltzmann equation, J. Colloid Interface Sci. 122, 299–307 (1988).CrossRef B. Nowakowski, J. Popielawski: Nonisothermal condensation on spherical aerosol particles from the Grad solution of the Boltzmann equation, J. Colloid Interface Sci. 122, 299–307 (1988).CrossRef
23.
go back to reference X. Qu, E. J. Davis, B. D. Swanson: Non-isothermal droplet evaporation and condensation in the near-continuum regime, J. Aerosol Sci. 32:1315–1339 (2001).CrossRef X. Qu, E. J. Davis, B. D. Swanson: Non-isothermal droplet evaporation and condensation in the near-continuum regime, J. Aerosol Sci. 32:1315–1339 (2001).CrossRef
24.
go back to reference E. J. Davis, A. K. Ray: Submicron droplet evaporation in the continuum and non-continuum regimes, J. Aerosol Sci. 9, 411–422 (1978).CrossRef E. J. Davis, A. K. Ray: Submicron droplet evaporation in the continuum and non-continuum regimes, J. Aerosol Sci. 9, 411–422 (1978).CrossRef
25.
go back to reference W. Li, E. J. Davis: Aerosol evaporation in the transition regime, Aerosol Sci. Technol. 25, 11–21 (1996).CrossRef W. Li, E. J. Davis: Aerosol evaporation in the transition regime, Aerosol Sci. Technol. 25, 11–21 (1996).CrossRef
Metadata
Title
Droplet Evaporation in the Non-continuum Regime
Author
E. J. Davis
Copyright Year
2011
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7264-4_15

Premium Partners