Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 5-6/2019

06-11-2019 | ORIGINAL ARTICLE

Dry hyperbaric welding of HSLA steel up to 35 bar ambient pressure with CMT arc mode

Authors: Ivan Bunaziv, Ragnhild Aune, Vigdis Olden, Odd M. Akselsen

Published in: The International Journal of Advanced Manufacturing Technology | Issue 5-6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hyperbaric welding plays a significant role in subsea pipeline installations and repairs for transport of oil and gas from the offshore field to the market. The effect of ambient pressure, from 1 to 35 bar, on penetration depth and microstructure evolution in dry hyperbaric welding of X70 pipeline steel has been investigated. It was found that penetration depth is increasing with increased ambient pressure due to enhanced melt flow by using the cold metal transfer (CMT) arc mode. Increase ambient pressure lowered process stability causing more spattering strongly affecting current/voltage characteristics of the arc. Numerical simulation showed very fast cooling rate regardless ambient pressure effect causing hard microstructure. Application of lower alloyed wire provided lower hardenability and higher fraction of the allotriomorphic ferrite with high acicular ferrite volume fraction. Chemical analysis revealed positive effect of low oxygen/nickel with high silicon containing wire for acicular ferrite nucleation in weld metal at any process parameters due to higher activity of inclusions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Richardson IM, Woodward NJ, Armstrong MA, Berge JO (2010) Developments in dry hyperbaric welding. in 3rd International Workshop on Stat-of-the-Art Science and Reliability of Underwater Welding and Inspection Technology. Houston, Texas, USA Richardson IM, Woodward NJ, Armstrong MA, Berge JO (2010) Developments in dry hyperbaric welding. in 3rd International Workshop on Stat-of-the-Art Science and Reliability of Underwater Welding and Inspection Technology. Houston, Texas, USA
2.
go back to reference Hart PR (1999) A study of non-consumable welding processes for diverless deepwater hyperbaric welding to 2500 m water depth. Cranfield University Hart PR (1999) A study of non-consumable welding processes for diverless deepwater hyperbaric welding to 2500 m water depth. Cranfield University
3.
go back to reference Akselsen OM, Aune R, Fostervoll H, Harsvoer AS (2006) Dry hyperbaric welding of subsea pipelines. Weld J 85(6):52–55 Akselsen OM, Aune R, Fostervoll H, Harsvoer AS (2006) Dry hyperbaric welding of subsea pipelines. Weld J 85(6):52–55
4.
go back to reference Azar AS (2012) Dry hyperbaric gas metal arc welding of subsea pipelines: experiments and modeling. In: Department of Engineering Design and Materials. Norwegian University of Science and Technology (NTNU), Trondheim Azar AS (2012) Dry hyperbaric gas metal arc welding of subsea pipelines: experiments and modeling. In: Department of Engineering Design and Materials. Norwegian University of Science and Technology (NTNU), Trondheim
5.
go back to reference Richardson IM, Nixon JH (1997) Deepwater hyperbaric welding – initial process evaluation. In: Proc. 7th International Conf. on Offshore and Polar Engineering (ISOPE). Honolulu, Hawaii, USA Richardson IM, Nixon JH (1997) Deepwater hyperbaric welding – initial process evaluation. In: Proc. 7th International Conf. on Offshore and Polar Engineering (ISOPE). Honolulu, Hawaii, USA
6.
go back to reference Ofem U, Ganguly S, Williams S, Woodward N (2014) Investigation of thermal cycle and metallurgical characteristics of hyperbaric gas metal arc welding. In: International Journal of Offshore and Polar Engineering (ISOPE). International Society of Offshore and Polar Engineers, p 207-212 Ofem U, Ganguly S, Williams S, Woodward N (2014) Investigation of thermal cycle and metallurgical characteristics of hyperbaric gas metal arc welding. In: International Journal of Offshore and Polar Engineering (ISOPE). International Society of Offshore and Polar Engineers, p 207-212
7.
go back to reference Azar AS, Akselsen OM, Fostervoll H (2012) Prediction of the thermal cycles in dry hyperbaric GMA welding using partial differential heat transfer equations. In: International conference; 9th, Trends in welding research; 2012; Chicago, IL. Materials Park, ASM International Azar AS, Akselsen OM, Fostervoll H (2012) Prediction of the thermal cycles in dry hyperbaric GMA welding using partial differential heat transfer equations. In: International conference; 9th, Trends in welding research; 2012; Chicago, IL. Materials Park, ASM International
8.
go back to reference Nixon JH (1995) Underwater repair technology. Gulf Professional Publishing, p 108 Nixon JH (1995) Underwater repair technology. Gulf Professional Publishing, p 108
9.
go back to reference Richardson IM, Nixon JH (1985) Open arc pulsed current GMAW: application to hyperbaric welding operations. In: ASM International Welding Conference. Toronto, Canada Richardson IM, Nixon JH (1985) Open arc pulsed current GMAW: application to hyperbaric welding operations. In: ASM International Welding Conference. Toronto, Canada
10.
go back to reference Schörghuber M (2005) Inventor cold-metal-transfer welding process and welding installation patent, US20090026188 A1 Schörghuber M (2005) Inventor cold-metal-transfer welding process and welding installation patent, US20090026188 A1
11.
go back to reference Chen M, Zhang D, Wu C (2017) Current waveform effects on CMT welding of mild steel. J Mater Process Technol 243:395–404 Chen M, Zhang D, Wu C (2017) Current waveform effects on CMT welding of mild steel. J Mater Process Technol 243:395–404
12.
go back to reference Feng J, Zhang H, He P (2009) The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater Des 30(5):1850–1852 Feng J, Zhang H, He P (2009) The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater Des 30(5):1850–1852
13.
go back to reference Pickin CG, Williams SW, Lunt M (2011) Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding. J Mater Process Technol 211(3):496–502 Pickin CG, Williams SW, Lunt M (2011) Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding. J Mater Process Technol 211(3):496–502
14.
go back to reference Wang P, Hu S, Shen J, Liang Y (2017) Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy. J Mater Process Technol 245:122–133 Wang P, Hu S, Shen J, Liang Y (2017) Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy. J Mater Process Technol 245:122–133
15.
go back to reference Zhang C, Li Y, Gao M, Zeng X (2018) Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source. Mater Sci Eng A 711:415–423 Zhang C, Li Y, Gao M, Zeng X (2018) Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source. Mater Sci Eng A 711:415–423
16.
go back to reference Ryan EM, Sabin TJ, Watts JF, Whiting MJ (2018) The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319. J Mater Process Technol 262:577–584 Ryan EM, Sabin TJ, Watts JF, Whiting MJ (2018) The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319. J Mater Process Technol 262:577–584
17.
go back to reference Zhang B, Wang C, Wang Z, Zhang L, Gao Q (2019) Microstructure and properties of Al alloy ER5183 deposited by variable polarity cold metal transfer. J Mater Process Technol 267:167–176 Zhang B, Wang C, Wang Z, Zhang L, Gao Q (2019) Microstructure and properties of Al alloy ER5183 deposited by variable polarity cold metal transfer. J Mater Process Technol 267:167–176
18.
go back to reference Ali Y, Henckell P, Hildebrand J, Reimann J, Bergmann JP, Barnikol-Oettler S (2019) Wire arc additive manufacturing of hot work tool steel with CMT process. J Mater Process Technol 269:109–116 Ali Y, Henckell P, Hildebrand J, Reimann J, Bergmann JP, Barnikol-Oettler S (2019) Wire arc additive manufacturing of hot work tool steel with CMT process. J Mater Process Technol 269:109–116
19.
go back to reference Zhang X, Zhou Q, Wang K, Peng Y, Ding J, Kong J, Williams S (2019) Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing. Mater Des 166:107611 Zhang X, Zhou Q, Wang K, Peng Y, Ding J, Kong J, Williams S (2019) Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing. Mater Des 166:107611
20.
go back to reference Xu X, Ding J, Ganguly S, Williams S (2019) Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process. J Mater Process Technol 265:201–209 Xu X, Ding J, Ganguly S, Williams S (2019) Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process. J Mater Process Technol 265:201–209
21.
go back to reference Woodward NJ, Fostervoll H, Akselsen OM, Ahlen CH, Berge JO, Armstrong M (2007) Inconel 625 performance as hyperbaric GMA welding consumable for diverless retrofit tee hot tap applications. In: International Society of Offshore and Polar Engineers (ISOPE). Lisbon, Portugal. Woodward NJ, Fostervoll H, Akselsen OM, Ahlen CH, Berge JO, Armstrong M (2007) Inconel 625 performance as hyperbaric GMA welding consumable for diverless retrofit tee hot tap applications. In: International Society of Offshore and Polar Engineers (ISOPE). Lisbon, Portugal.
22.
go back to reference Bhadeshia HKDH, Honeycombe RWK (2006) Steels: microstructure and properties, 3rd edn. Butterworth-Heinemann Bhadeshia HKDH, Honeycombe RWK (2006) Steels: microstructure and properties, 3rd edn. Butterworth-Heinemann
23.
go back to reference DebRoy T, David SA (1995) Physical processes in fusion welding. Rev Mod Phys 67(1):85–112 DebRoy T, David SA (1995) Physical processes in fusion welding. Rev Mod Phys 67(1):85–112
24.
go back to reference Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics. J Phys D Appl Phys 40(1):R1 Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics. J Phys D Appl Phys 40(1):R1
25.
go back to reference Planckaert J-P, Djermoune E-H, Brie D, Briand F, Richard F (2010) Modeling of MIG/MAG welding with experimental validation using an active contour algorithm applied on high speed movies. Appl Math Model 34(4):1004–1020 Planckaert J-P, Djermoune E-H, Brie D, Briand F, Richard F (2010) Modeling of MIG/MAG welding with experimental validation using an active contour algorithm applied on high speed movies. Appl Math Model 34(4):1004–1020
26.
go back to reference Pitscheneder W, DebRoy T, Mundra K, Ebner R (1996) Role of sulfur and processing variables on the temporal evolution of weld pool geometry during multikilowatt laser beam welding of steels. Weld J 75:71–80 Pitscheneder W, DebRoy T, Mundra K, Ebner R (1996) Role of sulfur and processing variables on the temporal evolution of weld pool geometry during multikilowatt laser beam welding of steels. Weld J 75:71–80
27.
go back to reference Zhang W, Kim C-H, DebRoy T (2004) Heat and fluid flow in complex joints during gas metal arc welding—Part II: application to fillet welding of mild steel. J Appl Phys 95(9):5220–5229 Zhang W, Kim C-H, DebRoy T (2004) Heat and fluid flow in complex joints during gas metal arc welding—Part II: application to fillet welding of mild steel. J Appl Phys 95(9):5220–5229
28.
go back to reference Li M, Brooks JA, Atteridge DG, Porter WD (1997) Thermophysical property measurements on low alloy high strength carbon steels. Scr Mater 36(12):1353–1359 Li M, Brooks JA, Atteridge DG, Porter WD (1997) Thermophysical property measurements on low alloy high strength carbon steels. Scr Mater 36(12):1353–1359
29.
go back to reference Miettinen J, Louhenkilpi S (1994) Calculation of thermophysical properties of carbon and low alloyed steels for modeling of solidification processes. Metall Mater Trans B 25(6):909–916 Miettinen J, Louhenkilpi S (1994) Calculation of thermophysical properties of carbon and low alloyed steels for modeling of solidification processes. Metall Mater Trans B 25(6):909–916
30.
go back to reference Arora A, Roy GG, DebRoy T (2009) Unusual wavy weld pool boundary from dimensional analysis. Scr Mater 60(2):68–71 Arora A, Roy GG, DebRoy T (2009) Unusual wavy weld pool boundary from dimensional analysis. Scr Mater 60(2):68–71
31.
go back to reference DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224 DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224
32.
go back to reference Mishra S, Lienert TJ, Johnson MQ, DebRoy T (2008) An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations. Acta Mater 56(9):2133–2146 Mishra S, Lienert TJ, Johnson MQ, DebRoy T (2008) An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations. Acta Mater 56(9):2133–2146
33.
go back to reference Robert A, Debroy T (2001) Geometry of laser spot welds from dimensionless numbers. Metall Mater Trans B 32(5):941–947 Robert A, Debroy T (2001) Geometry of laser spot welds from dimensionless numbers. Metall Mater Trans B 32(5):941–947
34.
go back to reference Goldak J, Akhlaghi M (2005) Computational welding mechanics. Springer Goldak J, Akhlaghi M (2005) Computational welding mechanics. Springer
35.
go back to reference Aarbogh HM, Hamide M, Fjær HG, Mo A, Bellet M (2010) Experimental validation of finite element codes for welding deformations. J Mater Process Technol 210(13):1681–1689 Aarbogh HM, Hamide M, Fjær HG, Mo A, Bellet M (2010) Experimental validation of finite element codes for welding deformations. J Mater Process Technol 210(13):1681–1689
36.
go back to reference Azar AS, Ås SK, Akselsen OM (2012) Determination of welding heat source parameters from actual bead shape. Comput Mater Sci 54:176–182 Azar AS, Ås SK, Akselsen OM (2012) Determination of welding heat source parameters from actual bead shape. Comput Mater Sci 54:176–182
37.
go back to reference Azar AS (2015) A heat source model for cold metal transfer (CMT) welding. J Therm Anal Calorim 122(2):741–746 Azar AS (2015) A heat source model for cold metal transfer (CMT) welding. J Therm Anal Calorim 122(2):741–746
38.
go back to reference Lindgren L-E (2007) Computational welding mechanics. Woodhead Publishing, pp 47–53 Lindgren L-E (2007) Computational welding mechanics. Woodhead Publishing, pp 47–53
39.
go back to reference Azar AS, Woodward N, Fostervoll H, Akselsen OM (2012) Statistical analysis of the arc behavior in dry hyperbaric GMA welding from 1 to 250 bar. J Mater Process Technol 212(1):211–219 Azar AS, Woodward N, Fostervoll H, Akselsen OM (2012) Statistical analysis of the arc behavior in dry hyperbaric GMA welding from 1 to 250 bar. J Mater Process Technol 212(1):211–219
40.
go back to reference Enjo T, Kikuchi Y, Horinouchi H, Ueda H (1987) MIG Welding under high pressure arc arc atmosphere. Trans JWRI 16(2):267–276 Enjo T, Kikuchi Y, Horinouchi H, Ueda H (1987) MIG Welding under high pressure arc arc atmosphere. Trans JWRI 16(2):267–276
41.
go back to reference Weman K (2006) MIG welding guide. CRC Press Weman K (2006) MIG welding guide. CRC Press
42.
go back to reference Dos Santos EBF, Kuroiwa LH, Ferreira AFC, Pistor R, Gerlich AP (2017) On the visualization of gas metal arc welding plasma and the relationship between arc length and voltage. Appl Sci 7(5) Dos Santos EBF, Kuroiwa LH, Ferreira AFC, Pistor R, Gerlich AP (2017) On the visualization of gas metal arc welding plasma and the relationship between arc length and voltage. Appl Sci 7(5)
43.
go back to reference Cho DW, Lee SH, Na SJ (2013) Characterization of welding arc and weld pool formation in vacuum gas hollow tungsten arc welding. J Mater Process Technol 213(2):143–152 Cho DW, Lee SH, Na SJ (2013) Characterization of welding arc and weld pool formation in vacuum gas hollow tungsten arc welding. J Mater Process Technol 213(2):143–152
44.
go back to reference Cheon J, Kiran DV, Na S-J (2016) CFD based visualization of the finger shaped evolution in the gas metal arc welding process. Int J Heat Mass Transf 97:1–14 Cheon J, Kiran DV, Na S-J (2016) CFD based visualization of the finger shaped evolution in the gas metal arc welding process. Int J Heat Mass Transf 97:1–14
45.
go back to reference Kozakov R, Schöpp H, Gött G, Sperl A, Wilhelm G, Uhrlandt D (2013) Weld pool temperatures of steel S235 while applying a controlled short-circuit gas metal arc welding process and various shielding gases. J Phys D Appl Phys 46(47):475501 Kozakov R, Schöpp H, Gött G, Sperl A, Wilhelm G, Uhrlandt D (2013) Weld pool temperatures of steel S235 while applying a controlled short-circuit gas metal arc welding process and various shielding gases. J Phys D Appl Phys 46(47):475501
46.
go back to reference Tsao KC, Wu CS (1988) Fluid flow and heat transfer in GMA weld pools. Weld J 67:70–76 Tsao KC, Wu CS (1988) Fluid flow and heat transfer in GMA weld pools. Weld J 67:70–76
47.
go back to reference Guojin L, Peilei Z, Xi W, Yunpeng N, Zhishui Y, Hua Y, Qinghua L (2018) Gap bridging of 6061 aluminum alloy joints welded by variable-polarity cold metal transfer. J Mater Process Technol 255:927–935 Guojin L, Peilei Z, Xi W, Yunpeng N, Zhishui Y, Hua Y, Qinghua L (2018) Gap bridging of 6061 aluminum alloy joints welded by variable-polarity cold metal transfer. J Mater Process Technol 255:927–935
48.
go back to reference Lin ML, Eagar TW (1985) Influence of arc pressure on weld pool geometry. Weld J 64(6):163–169 Lin ML, Eagar TW (1985) Influence of arc pressure on weld pool geometry. Weld J 64(6):163–169
49.
go back to reference Rokhlin SA, Guu C (1993) A study of arc force, pool depression, and weld penetration during gas tungsten arc welding. Weld J 72(8):381–390 Rokhlin SA, Guu C (1993) A study of arc force, pool depression, and weld penetration during gas tungsten arc welding. Weld J 72(8):381–390
50.
go back to reference Fairchild DP, Bangaru NV, Koo JY, Harrison PL, Ozekcin A (1991) A study concerning intercritical HAZ microstructure and toughness in HSLA steels. Weld J 471(12):321–329 Fairchild DP, Bangaru NV, Koo JY, Harrison PL, Ozekcin A (1991) A study concerning intercritical HAZ microstructure and toughness in HSLA steels. Weld J 471(12):321–329
51.
go back to reference Bunaziv I, Akselsen OM, Frostevarg J, Kaplan AFH (2018) Laser-arc hybrid welding of thick HSLA steel. J Mater Process Technol 259:75–87 Bunaziv I, Akselsen OM, Frostevarg J, Kaplan AFH (2018) Laser-arc hybrid welding of thick HSLA steel. J Mater Process Technol 259:75–87
52.
go back to reference Ricks RA, Howell PR, Barritte GS (1982) The nature of acicular ferrite in HSLA steel weld metals. J Mater Sci 17(3):732–740 Ricks RA, Howell PR, Barritte GS (1982) The nature of acicular ferrite in HSLA steel weld metals. J Mater Sci 17(3):732–740
53.
go back to reference Kluken AO, Grong Ø (1989) Mechanisms of inclusion formation in Al − Ti − Si − Mn deoxidized steel weld metals. Metall Trans A 20(8):1335–1349 Kluken AO, Grong Ø (1989) Mechanisms of inclusion formation in Al − Ti − Si − Mn deoxidized steel weld metals. Metall Trans A 20(8):1335–1349
54.
go back to reference Shim JH, Oh YJ, Suh JY, Cho YW, Shim JD, Byun JS, Lee DN (2001) Ferrite nucleation potency of non-metallic inclusions in medium carbon steels. Acta Mater 49(12):2115–2122 Shim JH, Oh YJ, Suh JY, Cho YW, Shim JD, Byun JS, Lee DN (2001) Ferrite nucleation potency of non-metallic inclusions in medium carbon steels. Acta Mater 49(12):2115–2122
55.
go back to reference Zhang D, Terasaki H, Komizo Y-I (2010) In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C–Mn steel. Acta Mater 58(4):1369–1378 Zhang D, Terasaki H, Komizo Y-I (2010) In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C–Mn steel. Acta Mater 58(4):1369–1378
56.
go back to reference van der Eijk C, Grong O, Walmsley J (2000) Mechanisms of inclusion formation in low alloy steels deoxidised with titanium. Mater Sci Technol 16(1):55–64 van der Eijk C, Grong O, Walmsley J (2000) Mechanisms of inclusion formation in low alloy steels deoxidised with titanium. Mater Sci Technol 16(1):55–64
57.
go back to reference Sarma DS, Karasev AV, Jönsson PG (2009) On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int 49(7):1063–1074 Sarma DS, Karasev AV, Jönsson PG (2009) On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int 49(7):1063–1074
58.
go back to reference Babu SS, Bhadeshia HKDH (1990) Transition from bainite to acicular ferrite in reheated Fe–Cr–C weld deposits. Mater Sci Technol 6(10):1005–1020 Babu SS, Bhadeshia HKDH (1990) Transition from bainite to acicular ferrite in reheated Fe–Cr–C weld deposits. Mater Sci Technol 6(10):1005–1020
Metadata
Title
Dry hyperbaric welding of HSLA steel up to 35 bar ambient pressure with CMT arc mode
Authors
Ivan Bunaziv
Ragnhild Aune
Vigdis Olden
Odd M. Akselsen
Publication date
06-11-2019
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 5-6/2019
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04511-6

Other articles of this Issue 5-6/2019

The International Journal of Advanced Manufacturing Technology 5-6/2019 Go to the issue

Premium Partners