Skip to main content
Top
Published in: Neural Computing and Applications 20/2021

15-08-2021 | Original Article

Dual attentive graph neural network for metro passenger flow prediction

Authors: Yuhuan Lu, Hongliang Ding, Shiqian Ji, N. N. Sze, Zhaocheng He

Published in: Neural Computing and Applications | Issue 20/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metro system has been increasingly recognized as a backbone of urban transportation system in many cities around the world. To improve the demand management and operation efficiency, it is crucial to have accurate prediction of real-time metro passenger flow. However, the forecast performance is often subject to the complex spatial and temporal distributions of the metro passenger flow data. To this end, we developed a novel dual attentive graph neural network that can effectively predict the distribution of metro traffic flow considering the spatial and temporal influences. Specifically, two directed complete metro graphs (i.e., inbound and outbound graphs) and the weighted matrix of them are proposed to characterize the inbound (entering the system) and outbound (leaving the system) passenger flow, respectively. The weighted matrix of inbound graph is estimated based on the historical origin-destination demand and that of the outbound graph is estimated based on the similarity metrics between every two stations. Moreover, to capture the dependencies between inbound and outbound flows, multi-layer graph spatial attention networks that incorporate the spatial context are applied to exploit the dynamic inter-station correlations. Then, the acquired dependency features integrated with external factors, such as weather conditions, are filtered by temporal attention and fed into a sequence decoder to produce short-term and long-term passenger flow predictions. Finally, a series experiments are conducted based on a comprehensive empirical dataset. Findings indicated that the proposed model does not only well predict the metro passenger flow, but also effectively detect the emergencies and incidents of metro system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference De Borger B, Kerstens K, Costa A (2002) Public transit performance: What does one learn from frontier studies? Transp Rev 22(1):1–38CrossRef De Borger B, Kerstens K, Costa A (2002) Public transit performance: What does one learn from frontier studies? Transp Rev 22(1):1–38CrossRef
2.
go back to reference Li H, Ding H, Ren G, Xu C (2018) Effects of the london cycle superhighways on the usage of the london cycle hire. Transp Res Pt A-Policy Pract 111:304–315CrossRef Li H, Ding H, Ren G, Xu C (2018) Effects of the london cycle superhighways on the usage of the london cycle hire. Transp Res Pt A-Policy Pract 111:304–315CrossRef
3.
go back to reference Ding H, Sze N, Li H, Guo Y (2020) Roles of infrastructure and land use in bicycle crash exposure and frequency: a case study using greater london bike sharing data. Accid Anal Prev 144:105652CrossRef Ding H, Sze N, Li H, Guo Y (2020) Roles of infrastructure and land use in bicycle crash exposure and frequency: a case study using greater london bike sharing data. Accid Anal Prev 144:105652CrossRef
4.
go back to reference Zhong C, Batty M, Manley E, Wang J, Wang Z, Chen F, Schmitt G (2016) Variability in regularity: Mining temporal mobility patterns in london, singapore and beijing using smart-card data. PLoS One 11(2):e0149222CrossRef Zhong C, Batty M, Manley E, Wang J, Wang Z, Chen F, Schmitt G (2016) Variability in regularity: Mining temporal mobility patterns in london, singapore and beijing using smart-card data. PLoS One 11(2):e0149222CrossRef
5.
go back to reference Li Y, Wang X, Sun S, Ma X, Lu G (2017) Forecasting short-term subway passenger flow under special events scenarios using multiscale radial basis function networks. Transp Res Pt C-Emerg Technol 77:306–328CrossRef Li Y, Wang X, Sun S, Ma X, Lu G (2017) Forecasting short-term subway passenger flow under special events scenarios using multiscale radial basis function networks. Transp Res Pt C-Emerg Technol 77:306–328CrossRef
6.
go back to reference Tang L, Zhao Y, Cabrera J, Ma J, Tsui KL (2018) Forecasting short-term passenger flow: An empirical study on shenzhen metro. IEEE Trans Intell Transp Syst 20(10):3613–3622CrossRef Tang L, Zhao Y, Cabrera J, Ma J, Tsui KL (2018) Forecasting short-term passenger flow: An empirical study on shenzhen metro. IEEE Trans Intell Transp Syst 20(10):3613–3622CrossRef
7.
go back to reference Chen E, Ye Z, Wang C, Xu M (2019) Subway passenger flow prediction for special events using smart card data. IEEE Trans Intell Transp Syst 21:1109–1120CrossRef Chen E, Ye Z, Wang C, Xu M (2019) Subway passenger flow prediction for special events using smart card data. IEEE Trans Intell Transp Syst 21:1109–1120CrossRef
8.
go back to reference Gong Y, Li Z, Zhang J, Liu W, Zheng Y, Kirsch C (2018) Network-wide crowd flow prediction of sydney trains via customized online non-negative matrix factorization. In: CIKM, pp 1243–1252 Gong Y, Li Z, Zhang J, Liu W, Zheng Y, Kirsch C (2018) Network-wide crowd flow prediction of sydney trains via customized online non-negative matrix factorization. In: CIKM, pp 1243–1252
9.
go back to reference Ahmed MS, Cook AR (1979) Analysis of freeway traffic time-series data by using box-jenkins techniques. Transp Res Record 722:1–9 Ahmed MS, Cook AR (1979) Analysis of freeway traffic time-series data by using box-jenkins techniques. Transp Res Record 722:1–9
10.
go back to reference Williams BM, Durvasula PK, Brown DE (1998) Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transp Res Record 1644(1):132–141CrossRef Williams BM, Durvasula PK, Brown DE (1998) Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transp Res Record 1644(1):132–141CrossRef
11.
go back to reference Williams BM, Hoel LA (2003) Modeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical results. J Transp Eng 129(6):664–672CrossRef Williams BM, Hoel LA (2003) Modeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical results. J Transp Eng 129(6):664–672CrossRef
12.
go back to reference Van Der Voort M, Dougherty M, Watson S (1996) Combining kohonen maps with arima time series models to forecast traffic flow. Transp Res Pt C-Emerg Technol 4(5):307–318CrossRef Van Der Voort M, Dougherty M, Watson S (1996) Combining kohonen maps with arima time series models to forecast traffic flow. Transp Res Pt C-Emerg Technol 4(5):307–318CrossRef
13.
go back to reference Smith BL, Demetsky MJ (1997) Traffic flow forecasting: comparison of modeling approaches. J Transp Eng 123(4):261–266CrossRef Smith BL, Demetsky MJ (1997) Traffic flow forecasting: comparison of modeling approaches. J Transp Eng 123(4):261–266CrossRef
14.
go back to reference Leshem G, Ritov Y (2007) Traffic flow prediction using adaboost algorithm with random forests as a weak learner. WASET, Citeseer 19:193–198 Leshem G, Ritov Y (2007) Traffic flow prediction using adaboost algorithm with random forests as a weak learner. WASET, Citeseer 19:193–198
15.
go back to reference Crosby H, Davis P, Jarvis SA (2016) Spatially-intensive decision tree prediction of traffic flow across the entire uk road network. In: DS-RT, IEEE, pp 116–119 Crosby H, Davis P, Jarvis SA (2016) Spatially-intensive decision tree prediction of traffic flow across the entire uk road network. In: DS-RT, IEEE, pp 116–119
16.
go back to reference Wu CH, Ho JM, Lee DT (2004) Travel-time prediction with support vector regression. IEEE Trans Intell Transp Syst 5(4):276–281CrossRef Wu CH, Ho JM, Lee DT (2004) Travel-time prediction with support vector regression. IEEE Trans Intell Transp Syst 5(4):276–281CrossRef
17.
go back to reference Xu H, Jiang C (2019) Deep belief network-based support vector regression method for traffic flow forecasting. Neural Comput Appl pp 1–10 Xu H, Jiang C (2019) Deep belief network-based support vector regression method for traffic flow forecasting. Neural Comput Appl pp 1–10
18.
go back to reference Sun S, Zhang C, Yu G (2006) A bayesian network approach to traffic flow forecasting. IEEE Trans Intell Transp Syst 7(1):124–132CrossRef Sun S, Zhang C, Yu G (2006) A bayesian network approach to traffic flow forecasting. IEEE Trans Intell Transp Syst 7(1):124–132CrossRef
19.
go back to reference Pascale A, Nicoli M (2011) Adaptive bayesian network for traffic flow prediction. In: SSP, IEEE, pp 177–180 Pascale A, Nicoli M (2011) Adaptive bayesian network for traffic flow prediction. In: SSP, IEEE, pp 177–180
20.
go back to reference Lu Y, He Z, Luo L (2019) Learning trajectories as words: a probabilistic generative model for destination prediction. In: MobiQuitous, pp 464–472 Lu Y, He Z, Luo L (2019) Learning trajectories as words: a probabilistic generative model for destination prediction. In: MobiQuitous, pp 464–472
21.
go back to reference Zhao SZ, Ni TH, Wang Y, Gao XT (2011) A new approach to the prediction of passenger flow in a transit system. Comput Math Appl 61(8):1968–1974MathSciNetCrossRef Zhao SZ, Ni TH, Wang Y, Gao XT (2011) A new approach to the prediction of passenger flow in a transit system. Comput Math Appl 61(8):1968–1974MathSciNetCrossRef
22.
go back to reference Hodge VJ, Krishnan R, Austin J, Polak J, Jackson T (2014) Short-term prediction of traffic flow using a binary neural network. Neural Comput Appl 25(7–8):1639–1655CrossRef Hodge VJ, Krishnan R, Austin J, Polak J, Jackson T (2014) Short-term prediction of traffic flow using a binary neural network. Neural Comput Appl 25(7–8):1639–1655CrossRef
23.
go back to reference Chen Q, Song Y, Zhao J (2020) Short-term traffic flow prediction based on improved wavelet neural network. Neural Comput Appl Chen Q, Song Y, Zhao J (2020) Short-term traffic flow prediction based on improved wavelet neural network. Neural Comput Appl
24.
go back to reference Wu Y, Tan H, Qin L, Ran B, Jiang Z (2018) A hybrid deep learning based traffic flow prediction method and its understanding. Transp Res Pt C-Emerg Technol 90:166–180CrossRef Wu Y, Tan H, Qin L, Ran B, Jiang Z (2018) A hybrid deep learning based traffic flow prediction method and its understanding. Transp Res Pt C-Emerg Technol 90:166–180CrossRef
25.
go back to reference Zhang J, Zheng Y, Qi D, Li R, Yi X, Li T (2018) Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif Intell 259:147–166MathSciNetCrossRef Zhang J, Zheng Y, Qi D, Li R, Yi X, Li T (2018) Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif Intell 259:147–166MathSciNetCrossRef
26.
go back to reference Zhang J, Zheng Y, Sun J, Qi D (2019) Flow prediction in spatio-temporal networks based on multitask deep learning. IEEE Trans Knowl Data Eng 32(3):468–478CrossRef Zhang J, Zheng Y, Sun J, Qi D (2019) Flow prediction in spatio-temporal networks based on multitask deep learning. IEEE Trans Knowl Data Eng 32(3):468–478CrossRef
27.
go back to reference Zhang Y, Zhou Y, Lu H, Fujita H (2020) Traffic network flow prediction using parallel training for deep convolutional neural networks on spark cloud. IEEE Trans Ind Inform 16:7369–7380CrossRef Zhang Y, Zhou Y, Lu H, Fujita H (2020) Traffic network flow prediction using parallel training for deep convolutional neural networks on spark cloud. IEEE Trans Ind Inform 16:7369–7380CrossRef
28.
go back to reference Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: ICLR Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: ICLR
29.
go back to reference Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI, pp 3634–3640 Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI, pp 3634–3640
30.
go back to reference Chen C, Li K, Teo SG, Zou X, Wang K, Wang J, Zeng Z (2019) Gated residual recurrent graph neural networks for traffic prediction. AAAI 33:485–492CrossRef Chen C, Li K, Teo SG, Zou X, Wang K, Wang J, Zeng Z (2019) Gated residual recurrent graph neural networks for traffic prediction. AAAI 33:485–492CrossRef
31.
go back to reference Wang X, Ma Y, Wang Y, Jin W, Wang X, Tang J, Jia C, Yu J (2020) Traffic flow prediction via spatial temporal graph neural network. In: WWW, pp 1082–1092 Wang X, Ma Y, Wang Y, Jin W, Wang X, Tang J, Jia C, Yu J (2020) Traffic flow prediction via spatial temporal graph neural network. In: WWW, pp 1082–1092
32.
go back to reference Zheng C, Fan X, Wang C, Qi J (2020) Gman: A graph multi-attention network for traffic prediction. AAAI 34:1234–1241CrossRef Zheng C, Fan X, Wang C, Qi J (2020) Gman: A graph multi-attention network for traffic prediction. AAAI 34:1234–1241CrossRef
33.
go back to reference Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
34.
go back to reference Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRef Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536CrossRef
35.
go back to reference Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertainty Fuzziness Knowl-Based Syst 6(02):107–116CrossRef Hochreiter S (1998) The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int J Uncertainty Fuzziness Knowl-Based Syst 6(02):107–116CrossRef
36.
go back to reference Beck D, Haffari G, Cohn T (2018) Graph-to-sequence learning using gated graph neural networks. In: ACL, pp 273–283 Beck D, Haffari G, Cohn T (2018) Graph-to-sequence learning using gated graph neural networks. In: ACL, pp 273–283
37.
go back to reference Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In: SDM, SIAM, pp 1–11 Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In: SDM, SIAM, pp 1–11
38.
go back to reference Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. KDD workshop, Seattle, WA 10:359–370 Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. KDD workshop, Seattle, WA 10:359–370
39.
go back to reference Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv preprint arXiv:171010903 Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv preprint arXiv:171010903
40.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: NIPS, vol 31 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: NIPS, vol 31
41.
go back to reference Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805 Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805
42.
go back to reference Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H (2019) Dual attention network for scene segmentation. In: CVPR, pp 3146–3154 Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H (2019) Dual attention network for scene segmentation. In: CVPR, pp 3146–3154
43.
go back to reference Ji Y, Zhang H, Wu QJ (2018) Salient object detection via multi-scale attention cnn. Neurocomputing 322:130–140CrossRef Ji Y, Zhang H, Wu QJ (2018) Salient object detection via multi-scale attention cnn. Neurocomputing 322:130–140CrossRef
44.
go back to reference Ji Y, Zhang H, Jie Z, Ma L, Wu QJ (2020) Casnet: a cross-attention siamese network for video salient object detection. IEEE Trans Neural Netw Learn Syst Ji Y, Zhang H, Jie Z, Ma L, Wu QJ (2020) Casnet: a cross-attention siamese network for video salient object detection. IEEE Trans Neural Netw Learn Syst
45.
go back to reference Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. In: ICML, vol 30, p 3 Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. In: ICML, vol 30, p 3
46.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778
47.
go back to reference Liu Y, Liu Z, Jia R (2019) Deeppf: A deep learning based architecture for metro passenger flow prediction. Transp Res Pt C-Emerg Technol 101:18–34CrossRef Liu Y, Liu Z, Jia R (2019) Deeppf: A deep learning based architecture for metro passenger flow prediction. Transp Res Pt C-Emerg Technol 101:18–34CrossRef
48.
go back to reference Liang Y, Ke S, Zhang J, Yi X, Zheng Y (2018) Geoman: Multi-level attention networks for geo-sensory time series prediction. In: IJCAI, pp 3428–3434 Liang Y, Ke S, Zhang J, Yi X, Zheng Y (2018) Geoman: Multi-level attention networks for geo-sensory time series prediction. In: IJCAI, pp 3428–3434
49.
go back to reference Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML, pp 807–814 Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML, pp 807–814
50.
go back to reference Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980
51.
go back to reference Ma X, Zhang J, Du B, Ding C, Sun L (2018) Parallel architecture of convolutional bi-directional lstm neural networks for network-wide metro ridership prediction. IEEE Trans Intell Transp Syst 20(6):2278–2288CrossRef Ma X, Zhang J, Du B, Ding C, Sun L (2018) Parallel architecture of convolutional bi-directional lstm neural networks for network-wide metro ridership prediction. IEEE Trans Intell Transp Syst 20(6):2278–2288CrossRef
52.
go back to reference Hao S, Lee DH, Zhao D (2019) Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system. Transp Res Pt C-Emerg Technol 107:287–300CrossRef Hao S, Lee DH, Zhao D (2019) Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system. Transp Res Pt C-Emerg Technol 107:287–300CrossRef
Metadata
Title
Dual attentive graph neural network for metro passenger flow prediction
Authors
Yuhuan Lu
Hongliang Ding
Shiqian Ji
N. N. Sze
Zhaocheng He
Publication date
15-08-2021
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 20/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05966-z

Other articles of this Issue 20/2021

Neural Computing and Applications 20/2021 Go to the issue

Premium Partner