Skip to main content
Top
Published in: Polymer Bulletin 9/2017

20-01-2017 | Original Paper

Dual temperature- and pH-responsive ibuprofen delivery from poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles and their fractal features

Authors: Xiaoqi Jin, Qian Wang, Jihong Sun, Hamida Panezail, Xia Wu, Shiyang Bai

Published in: Polymer Bulletin | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The loading properties of ibuprofen (IBU) were investigated using poly(N-isopropylacrylamide-co-acrylic acid) P(NIPAM-co-AA) copolymer nanoparticles as a carrier. Subsequently, the sensitivity of controlled release performance during changing external conditions and composition of copolymer were evaluated in detail. The results showed that the introduction of AA chains into PNIPAM framework enhanced the loading of IBU and the maximum loading capability of P(NIPAM-co-AA)-3 reached up to 7.9 wt%. The release behaviors of IBU-loaded copolymers exhibited high responsiveness to temperature and pH values. For example, P(NIPAM-co-AA)-10 exhibited a high cumulative release amount of 83.2% at 37 °C/pH 7.4, and a significant decrease in the release amount of 32.2% at 37 °C/pH 2.0. The influence of various amounts of acrylic acid (AA) and salt effect (ionic strength) on the swelling behaviors were demonstrated via dynamic light scattering method. Their microstructures and morphologies were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) techniques, which confirmed the presence of fractal structures with D m (2.65–2.87) or D s (2.0–2.33). These results further suggested that the structural evolution of P(NIPAM-co-AA) copolymer with increasing AA content had occurred from loose networks to dense aggregates with statistical self-similarity. The IBU-release mechanism was proposed, whereas the IBU diffusion contribution from P(NIPAM-co-AA) was thoroughly elucidated using three empirical equations, namely Korsmeyer–Peppas model, modified Korsmeyer–Peppas model and Higuchi model, respectively. The obtained results demonstrated that the release procedure of P(NIPAM-co-AA) was driven by typical non-Fickian diffusion mechanism in the basic medium, while in acid medium a two-stage release mechanism was observed due to their aggregation behaviors.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Díez-Peña E, Quijada-Garrido I, Barrales-Rienda JM, Schnell I, Spiess HW (2004) The formation of hydrogen bonds in hydrogels based on N-isopropylacrylamide (NiPAAm) and methacrylic acid (MAA). Macromol Chem Phys 205:438–447CrossRef Díez-Peña E, Quijada-Garrido I, Barrales-Rienda JM, Schnell I, Spiess HW (2004) The formation of hydrogen bonds in hydrogels based on N-isopropylacrylamide (NiPAAm) and methacrylic acid (MAA). Macromol Chem Phys 205:438–447CrossRef
2.
go back to reference Karg M, Pastoriza-Santos I, Rodriguez-González B (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306CrossRef Karg M, Pastoriza-Santos I, Rodriguez-González B (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306CrossRef
3.
go back to reference Ninni L, Ermatchkov V, Hasse H, Maure G (2014) Swelling behavior of chemically cross-linked poly(N-IPAAm-allylglycine) hydrogels: effects of NaCl and pH. Fluid Phase Equilib 361:257–265CrossRef Ninni L, Ermatchkov V, Hasse H, Maure G (2014) Swelling behavior of chemically cross-linked poly(N-IPAAm-allylglycine) hydrogels: effects of NaCl and pH. Fluid Phase Equilib 361:257–265CrossRef
4.
go back to reference Némethy Á, Solti K, Kiss L, Gyarmat B, Deli MA, Csányi E, Szilágyi A (2013) pH- and temperature-responsive poly(aspartic acid)-l-poly(N-isopropylacrylamide) conetwork hydrogel. Eur Polym J 49:2392–2403CrossRef Némethy Á, Solti K, Kiss L, Gyarmat B, Deli MA, Csányi E, Szilágyi A (2013) pH- and temperature-responsive poly(aspartic acid)-l-poly(N-isopropylacrylamide) conetwork hydrogel. Eur Polym J 49:2392–2403CrossRef
5.
go back to reference Constantin M, Bucatariu S, Harabagiu V, Popescu I, Ascenzi P, Fundueanu G (2014) Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. Eur J Pharm Sci 62:86–95CrossRef Constantin M, Bucatariu S, Harabagiu V, Popescu I, Ascenzi P, Fundueanu G (2014) Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. Eur J Pharm Sci 62:86–95CrossRef
6.
go back to reference Chen SL, Liu MZ, Jin SP, Chen Y (2014) pH-/temperature-sensitive carboxymethyl chitosan/poly(N-isopropylacrylamide-co-methacrylic acid) IPN: preparation, characterization and sustained release of riboflavin. Polym Bull 71:719–734CrossRef Chen SL, Liu MZ, Jin SP, Chen Y (2014) pH-/temperature-sensitive carboxymethyl chitosan/poly(N-isopropylacrylamide-co-methacrylic acid) IPN: preparation, characterization and sustained release of riboflavin. Polym Bull 71:719–734CrossRef
7.
go back to reference Park JS, Yang HN, Woo DG, Jeon SY, Park KH (2013) Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 34:8819–8834CrossRef Park JS, Yang HN, Woo DG, Jeon SY, Park KH (2013) Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 34:8819–8834CrossRef
8.
go back to reference Prasannan A, Tsai HC, Chen YS, Hsiue GH (2014) A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs. J Mater Chem B 2:1988–1997CrossRef Prasannan A, Tsai HC, Chen YS, Hsiue GH (2014) A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs. J Mater Chem B 2:1988–1997CrossRef
9.
go back to reference Johnson RP, Jeong Y, John JV, Chung CW, Kang DH, Selvaraj M, Suh H, Kim I (2013) Dual stimuli-responsive poly(N-isopropylacrylamide)-b-poly (l-histidine) chimeric materials for the controlled delivery of doxorubicin into liver carcinoma. Biomacromolecules 14:1434–1443CrossRef Johnson RP, Jeong Y, John JV, Chung CW, Kang DH, Selvaraj M, Suh H, Kim I (2013) Dual stimuli-responsive poly(N-isopropylacrylamide)-b-poly (l-histidine) chimeric materials for the controlled delivery of doxorubicin into liver carcinoma. Biomacromolecules 14:1434–1443CrossRef
10.
go back to reference Taşdelen B, Kayaman-Apohan N, Güvenc O, Baysal BM (2005) Anticancer drug release from poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels. Radiat Phys Chem 73:340–345CrossRef Taşdelen B, Kayaman-Apohan N, Güvenc O, Baysal BM (2005) Anticancer drug release from poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels. Radiat Phys Chem 73:340–345CrossRef
11.
go back to reference Xu TW, He BL (1998) Mechanism of sustained drug release in diffusion-controlled polymer matrix-application of percolation theory. Int J Pharm 170:139–149CrossRef Xu TW, He BL (1998) Mechanism of sustained drug release in diffusion-controlled polymer matrix-application of percolation theory. Int J Pharm 170:139–149CrossRef
12.
go back to reference Craig DQM (2002) The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 231:131–144CrossRef Craig DQM (2002) The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 231:131–144CrossRef
13.
go back to reference McGint S, McKee S (2015) Release mechanism and parameter estimation in drug-eluting stent systems: analytical solutions of drug release and tissue transport. Math Med Biol 32:163–186CrossRef McGint S, McKee S (2015) Release mechanism and parameter estimation in drug-eluting stent systems: analytical solutions of drug release and tissue transport. Math Med Biol 32:163–186CrossRef
14.
go back to reference Díez-Peña E, Frutos P, Frutos G, Quijada-Garrido I, Barrales-Rienda JM (2004) The influence of the copolymer composition on the diltiazem hydrochloride release from a series of pH-sensitive poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels. AAPS Pharm Sci Tech 5:1–8CrossRef Díez-Peña E, Frutos P, Frutos G, Quijada-Garrido I, Barrales-Rienda JM (2004) The influence of the copolymer composition on the diltiazem hydrochloride release from a series of pH-sensitive poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels. AAPS Pharm Sci Tech 5:1–8CrossRef
15.
go back to reference Sousa RG, Prior-Cabanillas A, Quijada-Garrido I, Barrales-Rienda JM (2005) Dependence of copolymer composition, swelling history, and drug concentration on the loading of diltiazem hydrochloride (DIL.HCl) into poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels and its release behaviour from hydrogel slabs. J Control Release 102:595–606CrossRef Sousa RG, Prior-Cabanillas A, Quijada-Garrido I, Barrales-Rienda JM (2005) Dependence of copolymer composition, swelling history, and drug concentration on the loading of diltiazem hydrochloride (DIL.HCl) into poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels and its release behaviour from hydrogel slabs. J Control Release 102:595–606CrossRef
16.
go back to reference Bekhradnia S, Zhu KZ, Knudsen KD, Sande SA, Nyström B (2014) Structure, swelling, and drug release of thermoresponsive poly(amidoamine) dendrimer-poly(N-isopropylacrylamide) hydrogels. J Mater Sci 49:6102–6110CrossRef Bekhradnia S, Zhu KZ, Knudsen KD, Sande SA, Nyström B (2014) Structure, swelling, and drug release of thermoresponsive poly(amidoamine) dendrimer-poly(N-isopropylacrylamide) hydrogels. J Mater Sci 49:6102–6110CrossRef
17.
go back to reference Milašinović N, Krušić MK, Knezevic-Jugovi Z, Filipovi J (2010) Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein. Int J Pharm 383:53–61CrossRef Milašinović N, Krušić MK, Knezevic-Jugovi Z, Filipovi J (2010) Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein. Int J Pharm 383:53–61CrossRef
18.
go back to reference Bai SY, Zhang H, Sun JH, Han J, Guo YY (2014) Preparation and pH-responsive performance of silane-modified poly(methylacrylic acid). J Appl Poly Sci 131:40403 Bai SY, Zhang H, Sun JH, Han J, Guo YY (2014) Preparation and pH-responsive performance of silane-modified poly(methylacrylic acid). J Appl Poly Sci 131:40403
19.
go back to reference Guo YY, Sun JH pH-sensitive performance of dextran-poly (acrylic acid) copolymer and its application as a controlled ibuprofen delivery. Int J Polym Mater Polym Biomaterials (In press) Guo YY, Sun JH pH-sensitive performance of dextran-poly (acrylic acid) copolymer and its application as a controlled ibuprofen delivery. Int J Polym Mater Polym Biomaterials (In press)
20.
go back to reference Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819CrossRef Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819CrossRef
21.
go back to reference Chalal M, Ehrburger-Dolle F, Morfin I, Bley F, Aguilar de Armas MR, Donaire MLL, Roman JS, Bőolgen Nimet, Pişkin E, Ziane O, Casalegno R (2010) SAXS investigation of the effect of temperature on the multiscale structure of a macroporous poly(N-isopropylacrylamide) gel. Macromolecules 43:2009–2017CrossRef Chalal M, Ehrburger-Dolle F, Morfin I, Bley F, Aguilar de Armas MR, Donaire MLL, Roman JS, Bőolgen Nimet, Pişkin E, Ziane O, Casalegno R (2010) SAXS investigation of the effect of temperature on the multiscale structure of a macroporous poly(N-isopropylacrylamide) gel. Macromolecules 43:2009–2017CrossRef
22.
go back to reference Varga N, Benkő M, Sebők D, Dékány I (2014) BSA/polyelectrolyte core–shell nanoparticles for controlled release of encapsulated ibuprofen. Colloids Sur B Biointerfaces 123:616–622CrossRef Varga N, Benkő M, Sebők D, Dékány I (2014) BSA/polyelectrolyte core–shell nanoparticles for controlled release of encapsulated ibuprofen. Colloids Sur B Biointerfaces 123:616–622CrossRef
23.
go back to reference Su SS, Wang H, Liu XG, Wu Y, Nie GJ (2013) iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials 34:3523–3533CrossRef Su SS, Wang H, Liu XG, Wu Y, Nie GJ (2013) iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials 34:3523–3533CrossRef
24.
go back to reference Zhang H, Bai SY, Sun JH, Han J, Guo YY (2014) pH-responsive ibuprofen delivery in silane-modified poly (methylacrylic acid) coated bimodal mesoporous silicas. Mater Res Bull 53:266–271CrossRef Zhang H, Bai SY, Sun JH, Han J, Guo YY (2014) pH-responsive ibuprofen delivery in silane-modified poly (methylacrylic acid) coated bimodal mesoporous silicas. Mater Res Bull 53:266–271CrossRef
25.
go back to reference Li ZM, Wang YJ, Shen J, Liu W, Sun XM (2014) The measurement system of nanoparticle size distribution from dynamic light scattering data. Opt Lasers Eng 56:94–98CrossRef Li ZM, Wang YJ, Shen J, Liu W, Sun XM (2014) The measurement system of nanoparticle size distribution from dynamic light scattering data. Opt Lasers Eng 56:94–98CrossRef
26.
go back to reference Höfl S, Zitzler L, Hellweg T, Herminghaus S, Mugele F (2007) Volume phase transition of ‘‘smart’’ microgels in bulk solution and adsorbed at an interface: a combined AFM, dynamic light, and small angle neutron scattering study. Polymer 48:245–254CrossRef Höfl S, Zitzler L, Hellweg T, Herminghaus S, Mugele F (2007) Volume phase transition of ‘‘smart’’ microgels in bulk solution and adsorbed at an interface: a combined AFM, dynamic light, and small angle neutron scattering study. Polymer 48:245–254CrossRef
27.
go back to reference Bolisetty S, Hoffmann M, Lekkala S, Hellweg Th, Ballauff M, Harnau L (2009) Coupling of rotational motion with shape fluctuations of core-shell microgels having tunable softness. Macromolecules 42:1264–1269CrossRef Bolisetty S, Hoffmann M, Lekkala S, Hellweg Th, Ballauff M, Harnau L (2009) Coupling of rotational motion with shape fluctuations of core-shell microgels having tunable softness. Macromolecules 42:1264–1269CrossRef
28.
go back to reference Hajji P, David L, Gerar JF, Pascault JP, Vigierg I (1999) Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci B Polym Phys 37:3172–3187CrossRef Hajji P, David L, Gerar JF, Pascault JP, Vigierg I (1999) Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci B Polym Phys 37:3172–3187CrossRef
29.
go back to reference Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133CrossRef Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133CrossRef
30.
go back to reference Chakraborty S, Mitra MK, Chaudhuri MG, Das B, Sa S, Dey R (2012) Study of the release mechanism of terminalia chebula extract from nanoporous silica gel. Appl Biochem Biotechnol 168:2043–2056CrossRef Chakraborty S, Mitra MK, Chaudhuri MG, Das B, Sa S, Dey R (2012) Study of the release mechanism of terminalia chebula extract from nanoporous silica gel. Appl Biochem Biotechnol 168:2043–2056CrossRef
31.
go back to reference Kuang Y, Zhao L, Zhang S, Zhang F, Dong M, Xu S (2010) Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures. Materials 3:5220–5235CrossRef Kuang Y, Zhao L, Zhang S, Zhang F, Dong M, Xu S (2010) Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures. Materials 3:5220–5235CrossRef
32.
go back to reference Kim H, Fassihi R (1997) Application of binary polymer system in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics. J Pharm Sci 86:323–328CrossRef Kim H, Fassihi R (1997) Application of binary polymer system in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics. J Pharm Sci 86:323–328CrossRef
33.
go back to reference Cost FO, Sous JJS, Pais AACC, Formosinho SJ (2003) Comparison of dissolution profiles of ibuprofen pellets. J Control Release 89:199–212CrossRef Cost FO, Sous JJS, Pais AACC, Formosinho SJ (2003) Comparison of dissolution profiles of ibuprofen pellets. J Control Release 89:199–212CrossRef
34.
go back to reference Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157CrossRef Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157CrossRef
35.
go back to reference Zhu YF, Shi JL, Li YS, Chen HR, Shen WH, Dong XP (2005) Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Micropor Mesopor Mater 85:75–81CrossRef Zhu YF, Shi JL, Li YS, Chen HR, Shen WH, Dong XP (2005) Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Micropor Mesopor Mater 85:75–81CrossRef
36.
go back to reference Viitala R, Jokinen M, Rosenholm JB (2007) Mechanistic studies on release of large and small molecules from biodegradable SiO2. Int J Pharm 336:382–390CrossRef Viitala R, Jokinen M, Rosenholm JB (2007) Mechanistic studies on release of large and small molecules from biodegradable SiO2. Int J Pharm 336:382–390CrossRef
37.
go back to reference Parfenyuk EV, Dolinina ES (2014) Design of silica carrier for controlled release of molsidomine: effect of preparation methods of silica matrixes and their composites with molsidomine on the drug release kinetics in vitro. Eur J Pharm Biopharm 88:1038–1045CrossRef Parfenyuk EV, Dolinina ES (2014) Design of silica carrier for controlled release of molsidomine: effect of preparation methods of silica matrixes and their composites with molsidomine on the drug release kinetics in vitro. Eur J Pharm Biopharm 88:1038–1045CrossRef
38.
go back to reference Lindner WD, Lippold BC (1995) Drug release from hydrocolloid embeddings with high or low susceptibility to hydrodynamic stress. Pharm Res 12:1781–1785CrossRef Lindner WD, Lippold BC (1995) Drug release from hydrocolloid embeddings with high or low susceptibility to hydrodynamic stress. Pharm Res 12:1781–1785CrossRef
39.
go back to reference Curcio M, Spizzirri UG, Iemma F, Puoci F, Cirillo G, Parisi OI, Picci N (2010) Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur J Pharm Biopharm 76:48–55CrossRef Curcio M, Spizzirri UG, Iemma F, Puoci F, Cirillo G, Parisi OI, Picci N (2010) Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur J Pharm Biopharm 76:48–55CrossRef
40.
go back to reference Zeeshan A, Gooding EA, Pimenov KV, Wang LL, Asher SA (2009) UV resonance Raman determination of molecular mechanism of poly(N-isopropylacryl -amide) volume phase transition. J Phys Chem B 113:4248–4256CrossRef Zeeshan A, Gooding EA, Pimenov KV, Wang LL, Asher SA (2009) UV resonance Raman determination of molecular mechanism of poly(N-isopropylacryl -amide) volume phase transition. J Phys Chem B 113:4248–4256CrossRef
41.
go back to reference Ende MTA, Peppas NA (1996) Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acry1ic acid-co-2-hydroxyethyl methacrylate) hydrogels. 1. Polymer characterization. J Appl Polym Sci 59:673–685CrossRef Ende MTA, Peppas NA (1996) Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acry1ic acid-co-2-hydroxyethyl methacrylate) hydrogels. 1. Polymer characterization. J Appl Polym Sci 59:673–685CrossRef
42.
go back to reference Mortera R, Fiorilli S, Garrone E, Verné E, Onida B (2010) Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics: a quantitative model. Chem Eng J 156:184–192CrossRef Mortera R, Fiorilli S, Garrone E, Verné E, Onida B (2010) Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics: a quantitative model. Chem Eng J 156:184–192CrossRef
43.
go back to reference Kocbek P, Baumgartner S, Kristl J (2006) Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 312:179–186CrossRef Kocbek P, Baumgartner S, Kristl J (2006) Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 312:179–186CrossRef
44.
go back to reference Sitta Danielly LA, Guilherme MR, Silva EP, Valente AJM, Muniz EC, Rubira AF (2014) Drug release mechanisms of chemically cross-linked albumin microparticles: effect of the matrix erosion. Colloids Surf B Biointerfaces 122:404–413CrossRef Sitta Danielly LA, Guilherme MR, Silva EP, Valente AJM, Muniz EC, Rubira AF (2014) Drug release mechanisms of chemically cross-linked albumin microparticles: effect of the matrix erosion. Colloids Surf B Biointerfaces 122:404–413CrossRef
45.
go back to reference Dowding PJ, Vincent B, Williams E (2000) Preparation and swelling properties of poly(NIPAM) “minigel” particles prepared by inverse suspension polymerization. J Colloid Interface Sci 221:268–272CrossRef Dowding PJ, Vincent B, Williams E (2000) Preparation and swelling properties of poly(NIPAM) “minigel” particles prepared by inverse suspension polymerization. J Colloid Interface Sci 221:268–272CrossRef
46.
go back to reference Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016CrossRef Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016CrossRef
47.
go back to reference Kratz K, Hellweg T, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A Physicochem Eng Asp 170:137–149CrossRef Kratz K, Hellweg T, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A Physicochem Eng Asp 170:137–149CrossRef
48.
go back to reference Hall RJ, Pinkrah VT, Chowdhry BZ, Snowden MJ (2004) Heteroaggregation studies of mixed cationic co-polymer/anionic homopolymer microgel dispersions. Colloids Surf A Physicochem Eng Asp 233:25–38CrossRef Hall RJ, Pinkrah VT, Chowdhry BZ, Snowden MJ (2004) Heteroaggregation studies of mixed cationic co-polymer/anionic homopolymer microgel dispersions. Colloids Surf A Physicochem Eng Asp 233:25–38CrossRef
49.
go back to reference Khan MS, Khan GT, Khan A, Sultana S (2013) Preparation and characterization of novel temperature and pH sensitive (NIPAM-co-MAA) polymer microgels and their volume phase change with various salts. Polymer (Korea) 37:794–801CrossRef Khan MS, Khan GT, Khan A, Sultana S (2013) Preparation and characterization of novel temperature and pH sensitive (NIPAM-co-MAA) polymer microgels and their volume phase change with various salts. Polymer (Korea) 37:794–801CrossRef
50.
go back to reference Farooqi ZH, Khan HU, Shah SM, Siddi M (2013) Stability of poly (N-isopropyl acrylamide-co-acrylicacid) polymer microgels under various conditions of temperature, pH and salt concentration. Arab J Chem. doi:10.1016/j.arabjc.2013.07.031 Farooqi ZH, Khan HU, Shah SM, Siddi M (2013) Stability of poly (N-isopropyl acrylamide-co-acrylicacid) polymer microgels under various conditions of temperature, pH and salt concentration. Arab J Chem. doi:10.​1016/​j.​arabjc.​2013.​07.​031
51.
go back to reference Hahn A, Brandes G, Wagener P, Barcikowski S (2011) Metal ion release kinetics from nanoparticle silicone composites. J Control Release 154:164–170CrossRef Hahn A, Brandes G, Wagener P, Barcikowski S (2011) Metal ion release kinetics from nanoparticle silicone composites. J Control Release 154:164–170CrossRef
52.
go back to reference Asrar J, Ding Y, Monica RE, Ness LC (2004) Controlled release of tebuconazole from a polymer matrix microparticle: release kinetics and length of efficacy. J Agric Food Chem 52:4814–4820CrossRef Asrar J, Ding Y, Monica RE, Ness LC (2004) Controlled release of tebuconazole from a polymer matrix microparticle: release kinetics and length of efficacy. J Agric Food Chem 52:4814–4820CrossRef
53.
go back to reference Zhou J, Pishko MV, Lutkenhaus JL (2014) Thermoresponsive layer-by-layer assemblies for nanoparticle-based drug delivery. Langmuir 30:5903–5910CrossRef Zhou J, Pishko MV, Lutkenhaus JL (2014) Thermoresponsive layer-by-layer assemblies for nanoparticle-based drug delivery. Langmuir 30:5903–5910CrossRef
Metadata
Title
Dual temperature- and pH-responsive ibuprofen delivery from poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles and their fractal features
Authors
Xiaoqi Jin
Qian Wang
Jihong Sun
Hamida Panezail
Xia Wu
Shiyang Bai
Publication date
20-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 9/2017
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-1915-4

Other articles of this Issue 9/2017

Polymer Bulletin 9/2017 Go to the issue

Premium Partners