Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2018

22-01-2018

Dynamic Recrystallization Behavior of AISI 422 Stainless Steel During Hot Deformation Processes

Authors: R. Mohammadi Ahmadabadi, M. Naderi, J. Aghazadeh Mohandesi, Jose Maria Cabrera

Published in: Journal of Materials Engineering and Performance | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, hot compression tests were performed to investigate the dynamic recrystallization (DRX) process of a martensitic stainless steel (AISI 422) at temperatures of 950, 1000, 1050, 1100 and 1150 °C and strain rates of 0.01, 0.1 and 1 s−1. The dependency of strain-hardening rate on flow stress was used to estimate the critical stress for the onset of DRX. Accordingly, the critical stress to peak stress ratio was calculated as 0.84. Moreover, the effect of true strain was examined by fitting stress values to an Arrhenius type constitutive equation, and then considering material constants as a function of strain by using a third-order polynomial equation. Finally, two constitutive models were used to investigate the competency of the strain-dependent constitutive equations to predict the flow stress curves of the studied steel. It was concluded that one model offers better precision on the flow stress values after the peak stress, while the other model gives more accurate results before the peak stress.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N.V. Dashunin, E.P. Manilova, and A.I. Rybnikov, Phase and Structural Transformations in 12% Chromium Steel ÉP428 Due to Long-Term Operation of Moving Blades, Met. Sci. Heat Treat., 2007, 49, p 23–29CrossRef N.V. Dashunin, E.P. Manilova, and A.I. Rybnikov, Phase and Structural Transformations in 12% Chromium Steel ÉP428 Due to Long-Term Operation of Moving Blades, Met. Sci. Heat Treat., 2007, 49, p 23–29CrossRef
2.
go back to reference L.Y. Liberman and M.N. Sokolova, A Study of Forgings of Full-Scale Rotors from Stainless Steel 2Kh12VNMF (ÉI802, ÉP428), Trudy TsKTI, 1965, 53, p 75–89 L.Y. Liberman and M.N. Sokolova, A Study of Forgings of Full-Scale Rotors from Stainless Steel 2Kh12VNMF (ÉI802, ÉP428), Trudy TsKTI, 1965, 53, p 75–89
3.
go back to reference L.Y. Liberman and M.I. Peisikhis, Properties of Steels and Alloys Used for Boiler and Turbine Production, Izd, TsKTI, Leningrad, 1966, 16, p 40–53 L.Y. Liberman and M.I. Peisikhis, Properties of Steels and Alloys Used for Boiler and Turbine Production, Izd, TsKTI, Leningrad, 1966, 16, p 40–53
4.
go back to reference H. Mirzadeh, M.H. Parsa, and D. Ohadi, Hot Deformation Behavior of Austenitic Stainless Steel for a Wide Range of Initial Grain Size, Mater. Sci. Eng. A, 2013, 569, p 54–60CrossRef H. Mirzadeh, M.H. Parsa, and D. Ohadi, Hot Deformation Behavior of Austenitic Stainless Steel for a Wide Range of Initial Grain Size, Mater. Sci. Eng. A, 2013, 569, p 54–60CrossRef
5.
go back to reference L.L. Wang, R.B. Li, and Y.G. Liao, Study on Characterization of Hot Deformation of 403 Steel, Mater. Sci. Eng. A, 2013, 567, p 84–88CrossRef L.L. Wang, R.B. Li, and Y.G. Liao, Study on Characterization of Hot Deformation of 403 Steel, Mater. Sci. Eng. A, 2013, 567, p 84–88CrossRef
6.
go back to reference A. Momeni and K. Dehghani, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel During Hot Deformation, Met. Mater. Int., 2010, 5, p 843–849CrossRef A. Momeni and K. Dehghani, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel During Hot Deformation, Met. Mater. Int., 2010, 5, p 843–849CrossRef
7.
go back to reference T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207CrossRef
8.
go back to reference T. Sakai and J.J. Jonas, Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209CrossRef T. Sakai and J.J. Jonas, Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209CrossRef
9.
go back to reference H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot Deformation Behavior of a medium Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882CrossRef H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot Deformation Behavior of a medium Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882CrossRef
10.
go back to reference Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Static Recrystallization Behavior of a Martensitic Heat-Resistant Stainless Steel 403Nb, Acta Metall. Sin. (Engl. Lett.), 2011, 24(5), p 381–389 Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Static Recrystallization Behavior of a Martensitic Heat-Resistant Stainless Steel 403Nb, Acta Metall. Sin. (Engl. Lett.), 2011, 24(5), p 381–389
11.
go back to reference Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Dynamic Recrystallization Behavior of a Heat-Resistant Martensitic Stainless Steel 403Nb During Hot Deformation, J. Mater. Sci. Technol., 2011, 27(10), p 913–919CrossRef Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Dynamic Recrystallization Behavior of a Heat-Resistant Martensitic Stainless Steel 403Nb During Hot Deformation, J. Mater. Sci. Technol., 2011, 27(10), p 913–919CrossRef
12.
go back to reference L. Sahebdel, S.M. Abbasi, and A. Momeni, Microstructural Evolution Through Hot Working of the Single-Phase and Two-Phase Ti-6Al-4V Alloy, Int. J. Mater. Res., 2011, 102(1), p 301–307CrossRef L. Sahebdel, S.M. Abbasi, and A. Momeni, Microstructural Evolution Through Hot Working of the Single-Phase and Two-Phase Ti-6Al-4V Alloy, Int. J. Mater. Res., 2011, 102(1), p 301–307CrossRef
13.
go back to reference Y. Fang, X. Chen, B. Madigan, H. Cao, and S. Konovalov, Effects of Strain Rate on the Hot Deformation Behavior and Dynamic Recrystallization in China Low Activation Martensitic Steel, Fus. Eng. Des., 2016, 103, p 21–30CrossRef Y. Fang, X. Chen, B. Madigan, H. Cao, and S. Konovalov, Effects of Strain Rate on the Hot Deformation Behavior and Dynamic Recrystallization in China Low Activation Martensitic Steel, Fus. Eng. Des., 2016, 103, p 21–30CrossRef
14.
go back to reference G.R. Ebrahimi, A. Momeni, M. Jahazi, and P. Bocher, Dynamic Recrystallization and Precipitation in 13%Cr Super-martensitic Stainless Steels, Metall. Mater. Trans. A, 2014, 45(4), p 2219–2231CrossRef G.R. Ebrahimi, A. Momeni, M. Jahazi, and P. Bocher, Dynamic Recrystallization and Precipitation in 13%Cr Super-martensitic Stainless Steels, Metall. Mater. Trans. A, 2014, 45(4), p 2219–2231CrossRef
15.
go back to reference E. Shafie and K. Dehghani, Prediction of Single-Peak Flow Stress Curves at High Temperature Using a New Logarithmic-Power Function, J. Mater. Eng. Perform., 2016, 25, p 4024–4035CrossRef E. Shafie and K. Dehghani, Prediction of Single-Peak Flow Stress Curves at High Temperature Using a New Logarithmic-Power Function, J. Mater. Eng. Perform., 2016, 25, p 4024–4035CrossRef
16.
go back to reference J. Huang and Z. Xu, Evolution Mechanism of Grain Refinement Based on Dynamic Recrystallization in Multiaxially Forged Austenite, Mater. Lett., 2006, 60(15), p 1854–1858CrossRef J. Huang and Z. Xu, Evolution Mechanism of Grain Refinement Based on Dynamic Recrystallization in Multiaxially Forged Austenite, Mater. Lett., 2006, 60(15), p 1854–1858CrossRef
17.
go back to reference R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274CrossRef R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274CrossRef
18.
go back to reference A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684CrossRef A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684CrossRef
19.
go back to reference Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations, A1033-04, ASTM International Standard, 2007, p 1–14 Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations, A1033-04, ASTM International Standard, 2007, p 1–14
20.
go back to reference Standard Guide for Preparation of Metallographic Specimens, E3-01, Annual Book of ASTM Standards, 2007, p 1–12 Standard Guide for Preparation of Metallographic Specimens, E3-01, Annual Book of ASTM Standards, 2007, p 1–12
21.
go back to reference ASTM Standard, E-96 (2004) e2, Standard test methods for determining average grain size, ASTM, 2004 ASTM Standard, E-96 (2004) e2, Standard test methods for determining average grain size, ASTM, 2004
22.
go back to reference C.M. Sellars, Recrystallization of Metals During Hot Deformation, Philos. Trans. R. Soc. Lond. A, 1978, 1350, p 147–158CrossRef C.M. Sellars, Recrystallization of Metals During Hot Deformation, Philos. Trans. R. Soc. Lond. A, 1978, 1350, p 147–158CrossRef
23.
go back to reference T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, Mater. Process. Technol., 1995, 53, p 349–361CrossRef T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, Mater. Process. Technol., 1995, 53, p 349–361CrossRef
24.
go back to reference H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63CrossRef H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63CrossRef
25.
go back to reference F. Ren, F. Chen, and J. Chen, Investigation on Dynamic Recrystallization Behavior of Martensitic Stainless Steel, Adv. Mater. Sci. Eng., 2014, 2014, p 1–16 F. Ren, F. Chen, and J. Chen, Investigation on Dynamic Recrystallization Behavior of Martensitic Stainless Steel, Adv. Mater. Sci. Eng., 2014, 2014, p 1–16
26.
go back to reference C.M. Sellars and W.J.M.G. Tegart, Hot Workability, Int. Metall. Rev., 1972, 17(1), p 1–24 C.M. Sellars and W.J.M.G. Tegart, Hot Workability, Int. Metall. Rev., 1972, 17(1), p 1–24
27.
go back to reference M.S. Ghazani, A. Vajd, and B. Mosadeg, Prediction of Critical Stress and Strain for the Onset of Dynamic Recrystallization in Plain Carbon Steels, J. Mater. Sci. Eng., 2015, 12(1), p 61–67 M.S. Ghazani, A. Vajd, and B. Mosadeg, Prediction of Critical Stress and Strain for the Onset of Dynamic Recrystallization in Plain Carbon Steels, J. Mater. Sci. Eng., 2015, 12(1), p 61–67
28.
go back to reference H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–52CrossRef H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–52CrossRef
29.
go back to reference Z. Akbari, H. Mirzadeh, and J.M. Cabrera, A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation, Mater. Des., 2015, 77, p 126–131CrossRef Z. Akbari, H. Mirzadeh, and J.M. Cabrera, A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation, Mater. Des., 2015, 77, p 126–131CrossRef
30.
go back to reference R. Ebrahimi, S.H. Zahiri, and A. Najafizadeh, Mathematical Modeling of the Stress–Strain Curves of Ti-IF Steel at High Temperature, J. Mater. Proc. Technol., 2006, 171, p 301–305CrossRef R. Ebrahimi, S.H. Zahiri, and A. Najafizadeh, Mathematical Modeling of the Stress–Strain Curves of Ti-IF Steel at High Temperature, J. Mater. Proc. Technol., 2006, 171, p 301–305CrossRef
31.
go back to reference F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, UK, 1996, p 363–392 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, UK, 1996, p 363–392
32.
go back to reference B. Hutchinson, J. Hagstro, O. Karlsson et al., Microstructures and Hardness of As-Quenched Martensites (0.1–0.5%C), Acta Mater., 2011, 59, p 5845–5858CrossRef B. Hutchinson, J. Hagstro, O. Karlsson et al., Microstructures and Hardness of As-Quenched Martensites (0.1–0.5%C), Acta Mater., 2011, 59, p 5845–5858CrossRef
Metadata
Title
Dynamic Recrystallization Behavior of AISI 422 Stainless Steel During Hot Deformation Processes
Authors
R. Mohammadi Ahmadabadi
M. Naderi
J. Aghazadeh Mohandesi
Jose Maria Cabrera
Publication date
22-01-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3153-9

Other articles of this Issue 2/2018

Journal of Materials Engineering and Performance 2/2018 Go to the issue

Premium Partners