Skip to main content
Top

2011 | OriginalPaper | Chapter

4. Dynamics of Liquid Droplets

Authors : A. Mashayek, N. Ashgriz

Published in: Handbook of Atomization and Sprays

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter the basic physics and methods of calculation of the effective drag forces acting on drops in isolated-drop and multidrop configurations relevant to sprays are provided. The effect of various physical phenomena such as drop deformation, nonuniformity of the incoming flow, drop–drop interactions, drop–gas interactions, and evaporation on the drag coefficient on the drop, with special focus on the underlying physics, is highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University Press, pp. 331–343, 1967. Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University Press, pp. 331–343, 1967.
2.
go back to reference Oseen, C. W., Hydrodynamic, Akademische Verlag, Leipzig, 1927. Oseen, C. W., Hydrodynamic, Akademische Verlag, Leipzig, 1927.
3.
go back to reference Voloshuk, V. M. and Sedunow, J. S., The Processes of Coagulation in Dispersed Systems, Nauka, Moscow, 1976. Voloshuk, V. M. and Sedunow, J. S., The Processes of Coagulation in Dispersed Systems, Nauka, Moscow, 1976.
4.
go back to reference Van Dyke, M., An Album of Fluid Motion, The Parabolic Press, Stanford, (1982). Van Dyke, M., An Album of Fluid Motion, The Parabolic Press, Stanford, (1982).
5.
go back to reference Kundu, P. K. and Cohen, I. M., Fluid Mechanics, Fourth edition, Academic Press, San Diego, 2008. Kundu, P. K. and Cohen, I. M., Fluid Mechanics, Fourth edition, Academic Press, San Diego, 2008.
6.
go back to reference Kelbaliyev, G. and Ceylan, K., Development of new empirical equations for estimation of drag coefficient, shape deformation, and rising velocity of gas bubbles or liquid drops. Chem. Eng. Commun. 194, 1623–1637, 2007.CrossRef Kelbaliyev, G. and Ceylan, K., Development of new empirical equations for estimation of drag coefficient, shape deformation, and rising velocity of gas bubbles or liquid drops. Chem. Eng. Commun. 194, 1623–1637, 2007.CrossRef
7.
go back to reference Hadamard, J. S., Mouvement Permanent Lent d’une Sphere Liquid et Visqueuse dans une Liquid Visquese, C.R. Acad. Sci. 152, 1735–1738, 1911.MATH Hadamard, J. S., Mouvement Permanent Lent d’une Sphere Liquid et Visqueuse dans une Liquid Visquese, C.R. Acad. Sci. 152, 1735–1738, 1911.MATH
8.
go back to reference Taylor, T. and Acrivos, A., On the deformation and drag of a falling drop at low Reynolds numbers, J. Fluid Mech., 18, 466–476, 1964.MATHCrossRefMathSciNet Taylor, T. and Acrivos, A., On the deformation and drag of a falling drop at low Reynolds numbers, J. Fluid Mech., 18, 466–476, 1964.MATHCrossRefMathSciNet
9.
go back to reference Happer, J. and Moore, D. W., The motion of a spherical liquid drop at high Reynolds number, J. Fluid Mech., 32, part 2, 367–391, 1968.CrossRef Happer, J. and Moore, D. W., The motion of a spherical liquid drop at high Reynolds number, J. Fluid Mech., 32, part 2, 367–391, 1968.CrossRef
10.
go back to reference Rivkind, V. Y. and Ryskin, G. M. Flow structure in motion of a spherical drop in a fluid medium at intermediate Reynolds numbers. Fluid Dynamics (English translation of: Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza), 11, 5–12, 1976.CrossRef Rivkind, V. Y. and Ryskin, G. M. Flow structure in motion of a spherical drop in a fluid medium at intermediate Reynolds numbers. Fluid Dynamics (English translation of: Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza), 11, 5–12, 1976.CrossRef
11.
go back to reference Oliver, D. L. R. and Chung, J. N. Flow about a fluid sphere at low to moderate Reynolds numbers. J. Fluid Mech., 177, 1–18, 1987.MATHCrossRef Oliver, D. L. R. and Chung, J. N. Flow about a fluid sphere at low to moderate Reynolds numbers. J. Fluid Mech., 177, 1–18, 1987.MATHCrossRef
12.
go back to reference Feng, Z. G. and Michaelides, E. E., Drag coefficients of viscous spheres at intermediate and high Reynolds numbers, J. Fluids Eng. 123(Issue), 2001. Feng, Z. G. and Michaelides, E. E., Drag coefficients of viscous spheres at intermediate and high Reynolds numbers, J. Fluids Eng. 123(Issue), 2001.
13.
go back to reference Schiller, L. and Naumann, A. Über die grundlegenden berechungen bei der schwerkraftaufbereitung. Vereines Deutscher Ingenieure 7, 318, 1933. Schiller, L. and Naumann, A. Über die grundlegenden berechungen bei der schwerkraftaufbereitung. Vereines Deutscher Ingenieure 7, 318, 1933.
14.
go back to reference Putnam, A. Integratable form of droplet drag coefficient. ARS J. 1961. Putnam, A. Integratable form of droplet drag coefficient. ARS J. 1961.
15.
go back to reference Clift, R. and Gauvin, W. H. The motion of particles in turbulent gas streams. Proc. Chemeca, 1970. Clift, R. and Gauvin, W. H. The motion of particles in turbulent gas streams. Proc. Chemeca, 1970.
16.
go back to reference Schaaf, S. A. and Chambre, P. L. High speed aerodynamics and jet propulsion VIII, Princeton University Press, Princeton, 1958. Schaaf, S. A. and Chambre, P. L. High speed aerodynamics and jet propulsion VIII, Princeton University Press, Princeton, 1958.
17.
go back to reference Crowe, C. T., Babcock, W., Willoughby, P. G., and Carlson, R. L., Measurement of particle drag coefficient in flow regimes encountered by particles in a rocket nozzle, United Technology Report 2296-FR, 1969. Crowe, C. T., Babcock, W., Willoughby, P. G., and Carlson, R. L., Measurement of particle drag coefficient in flow regimes encountered by particles in a rocket nozzle, United Technology Report 2296-FR, 1969.
18.
go back to reference Hermsen, R. W. Review of particle drag models. Subcommittee 12th Meeting Minutes, CPIA Publication, 1979. Hermsen, R. W. Review of particle drag models. Subcommittee 12th Meeting Minutes, CPIA Publication, 1979.
19.
go back to reference Wadhwa, A. R., Magi, V., and Abraham, J. Transient deformation and drag of decelerating drops in axisymmetric flows. Phys. Fluids, 19, 113301, 2007.CrossRef Wadhwa, A. R., Magi, V., and Abraham, J. Transient deformation and drag of decelerating drops in axisymmetric flows. Phys. Fluids, 19, 113301, 2007.CrossRef
20.
go back to reference Mashayek, A. and Ashgriz, N., Model or deformation of drops and liquid jets in gaseous crossflows. AIAA J. 47(2) (2009). Mashayek, A. and Ashgriz, N., Model or deformation of drops and liquid jets in gaseous crossflows. AIAA J. 47(2) (2009).
21.
go back to reference Desantes, J. M., Margot, X., Pastor, J. M., Chavez, M., and Pinzello, A. CFD-Phenomenological diesel spray analysis under evaporative conditions. Energy Fuels 23, 3919–3929, 2009.CrossRef Desantes, J. M., Margot, X., Pastor, J. M., Chavez, M., and Pinzello, A. CFD-Phenomenological diesel spray analysis under evaporative conditions. Energy Fuels 23, 3919–3929, 2009.CrossRef
22.
go back to reference Achenbach, E. Distribution of local pressure and skin friction around a circular cylinder in crossflow up to Re = 5×106. Fluid Mechanics 34, 625–639, 1968. Achenbach, E. Distribution of local pressure and skin friction around a circular cylinder in crossflow up to Re = 5×106. Fluid Mechanics 34, 625–639, 1968.
23.
go back to reference O’Rourke, P. J. and Amsden, A. A. The TAB Method for Numerical Calculation of Spray Droplet Breakup, SAE Paper 872089. O’Rourke, P. J. and Amsden, A. A. The TAB Method for Numerical Calculation of Spray Droplet Breakup, SAE Paper 872089.
24.
go back to reference Liu, A. B., Mather, D., and Reitz, R. D. Modeling the effects of drop drag and breakup on fuel sprays, SAE Paper 930072. Liu, A. B., Mather, D., and Reitz, R. D. Modeling the effects of drop drag and breakup on fuel sprays, SAE Paper 930072.
25.
go back to reference Clair, B. L. and Hamielec, A. Viscous flow through particle assemblages at intermediate Reynolds numbers. IεEC Fundam. 7, 308–315, 1968. Clair, B. L. and Hamielec, A. Viscous flow through particle assemblages at intermediate Reynolds numbers. IεEC Fundam. 7, 308–315, 1968.
26.
go back to reference Poo J. Y. and Ashgriz N. Variation of drag coefficients in an interacting drop stream, Exp. Fluids, 11, 1–8, 1991.CrossRef Poo J. Y. and Ashgriz N. Variation of drag coefficients in an interacting drop stream, Exp. Fluids, 11, 1–8, 1991.CrossRef
27.
go back to reference Cybulski, A., Dalen, M. V., Verkerk, J., and Berg, P. V. D. Gas-particle heat-transfer coefficients in packed beds. Chem. Eng. Sci. 30, 1015, 1975.CrossRef Cybulski, A., Dalen, M. V., Verkerk, J., and Berg, P. V. D. Gas-particle heat-transfer coefficients in packed beds. Chem. Eng. Sci. 30, 1015, 1975.CrossRef
28.
go back to reference Difelice, R. The voidage function for fluid-particle interaction systems. Int. J. Multiph. Flow 20, 153–159, 1994.CrossRef Difelice, R. The voidage function for fluid-particle interaction systems. Int. J. Multiph. Flow 20, 153–159, 1994.CrossRef
29.
go back to reference Dwyer, H., Nirschl, H., Kerschl, P., and Denk, V. Heat, mass and momentum transfer about arbitrary groups of particles. Twenty-Fifth Symposium on Combustion, Irvine, pp. 389–395, 1994. Dwyer, H., Nirschl, H., Kerschl, P., and Denk, V. Heat, mass and momentum transfer about arbitrary groups of particles. Twenty-Fifth Symposium on Combustion, Irvine, pp. 389–395, 1994.
30.
go back to reference Ergun, S. 1952 Fluid flow through packed columns. Chem. Eng. Prog. 48(2), 89–94, 1952. Ergun, S. 1952 Fluid flow through packed columns. Chem. Eng. Prog. 48(2), 89–94, 1952.
31.
go back to reference Gibilaro, L. G., Felice, R. I. D., and Waldram, S. P. Generalized friction factor and drag coefficient correlations for fluid-particle interactions. Chem. Eng. Sci. 40, 1817–1823, 1985.CrossRef Gibilaro, L. G., Felice, R. I. D., and Waldram, S. P. Generalized friction factor and drag coefficient correlations for fluid-particle interactions. Chem. Eng. Sci. 40, 1817–1823, 1985.CrossRef
32.
go back to reference Hill, R. J. Koch, D. L., and Ladd, A. J. C. The first effect of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 213–248, 2001a.MATHMathSciNet Hill, R. J. Koch, D. L., and Ladd, A. J. C. The first effect of fluid inertia on flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 213–248, 2001a.MATHMathSciNet
33.
go back to reference Hill, R. J. Koch, D. L., and Ladd, A. J. C. Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 243–278, 2001b.MATHMathSciNet Hill, R. J. Koch, D. L., and Ladd, A. J. C. Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 243–278, 2001b.MATHMathSciNet
34.
go back to reference Ishii, M. and Zuber, N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J. 25(5), 843–855, 1979.CrossRef Ishii, M. and Zuber, N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J. 25(5), 843–855, 1979.CrossRef
35.
go back to reference Kim, I., Elghobashi, S., and Sirignano, W. Three-dimensional flow over two spheres placed side by side. J. Fluid Mech. 246, 465–488, 1993.MATHCrossRef Kim, I., Elghobashi, S., and Sirignano, W. Three-dimensional flow over two spheres placed side by side. J. Fluid Mech. 246, 465–488, 1993.MATHCrossRef
36.
go back to reference Mulholland, J., Srivastava, R., and Wendt, J. Influence of droplet spacing on drag coefficient in nonevaporating, monodisperse streams. AIAA J. 26(10), 1231–1237, 1988.CrossRef Mulholland, J., Srivastava, R., and Wendt, J. Influence of droplet spacing on drag coefficient in nonevaporating, monodisperse streams. AIAA J. 26(10), 1231–1237, 1988.CrossRef
37.
go back to reference Poo, J. and Ashgriz, N. Variation of drag coefficients in an interacting drop stream. Exp. Fluids 11, 1–8, 1991.CrossRef Poo, J. and Ashgriz, N. Variation of drag coefficients in an interacting drop stream. Exp. Fluids 11, 1–8, 1991.CrossRef
38.
go back to reference Racmachandran, R., Kleinstreuer, C., and Wang, T.-Y. Forced convection heat transfer of interacting spheres. Numer. Heat Transf. 15, 471–487, 1989.CrossRef Racmachandran, R., Kleinstreuer, C., and Wang, T.-Y. Forced convection heat transfer of interacting spheres. Numer. Heat Transf. 15, 471–487, 1989.CrossRef
39.
go back to reference Tal, R., Lee, D., and Siriganano, W. Hydrodynamics and heat transfer in sphere assemblages cylindrical cell models. Int. J. Heat Mass Transf. 26(9), 1265–1273, 1983.MATHCrossRef Tal, R., Lee, D., and Siriganano, W. Hydrodynamics and heat transfer in sphere assemblages cylindrical cell models. Int. J. Heat Mass Transf. 26(9), 1265–1273, 1983.MATHCrossRef
40.
go back to reference Tal, R., Lee, D., and Siriganano, W. Heat and mass momentum transfer around a pair of spheres in viscous flow. Int. J. Heat Mass Transf. 27(11), 1953–1962, 1984.MATHCrossRef Tal, R., Lee, D., and Siriganano, W. Heat and mass momentum transfer around a pair of spheres in viscous flow. Int. J. Heat Mass Transf. 27(11), 1953–1962, 1984.MATHCrossRef
41.
go back to reference Tal, R. and Sirignano, W. Cylindrical cell model for hydrodynamics of particles assemblages at intermediate Reynolds numbers. AIChE J. 28(2), 233–237, 1982.CrossRef Tal, R. and Sirignano, W. Cylindrical cell model for hydrodynamics of particles assemblages at intermediate Reynolds numbers. AIChE J. 28(2), 233–237, 1982.CrossRef
42.
go back to reference Zhu, C., Liang, S.-C., and Fan, L.-S. Particle wake effects on the drag force of an interactive particle. Int. J. Multiph. Flow 20(1), 117–129, 1994.MATHCrossRef Zhu, C., Liang, S.-C., and Fan, L.-S. Particle wake effects on the drag force of an interactive particle. Int. J. Multiph. Flow 20(1), 117–129, 1994.MATHCrossRef
43.
go back to reference Sadhal, S.S., Ayyaswamy, P.S., and Chung, J.N. Transport Phenomena with drops and bubbles, 1997. Sadhal, S.S., Ayyaswamy, P.S., and Chung, J.N. Transport Phenomena with drops and bubbles, 1997.
44.
go back to reference Giles D. K., Energy conversion and distribution in pressure atomization, Trans. ASAE, 31(6), 1668–1673, 1988. Giles D. K., Energy conversion and distribution in pressure atomization, Trans. ASAE, 31(6), 1668–1673, 1988.
45.
go back to reference Rhee J.B., Young W., and Bode L. E., Transport of spray droplets from flat-fan nozzles, ASAE paper No. 90–1001, 1990. Rhee J.B., Young W., and Bode L. E., Transport of spray droplets from flat-fan nozzles, ASAE paper No. 90–1001, 1990.
46.
go back to reference Rusche, H. and Issa, R. I., The Effects of voidage on the drag force on particles, droplets and bubbles in dispersed two-phase flow, Proceedings of the 2nd Japanese-European Two-Phase Flow Group Meeting, Tsukuba, Japan, 2000. Rusche, H. and Issa, R. I., The Effects of voidage on the drag force on particles, droplets and bubbles in dispersed two-phase flow, Proceedings of the 2nd Japanese-European Two-Phase Flow Group Meeting, Tsukuba, Japan, 2000.
47.
go back to reference Rudinger, G., Fundamentals of Gas-Particle Flow, Handbook of Powder Technology, Vol. 2, Elsevier Scientific Publishing Co., Amesterdam, 1980. Rudinger, G., Fundamentals of Gas-Particle Flow, Handbook of Powder Technology, Vol. 2, Elsevier Scientific Publishing Co., Amesterdam, 1980.
48.
go back to reference Eisenklam, P., Arunachlaman, S. A., and Weston, J. A., Evaporation rates and drag resistances of burning drops, 11th International Symposium on Combustion, Pittsburgh, pp. 715–728, 1967. Eisenklam, P., Arunachlaman, S. A., and Weston, J. A., Evaporation rates and drag resistances of burning drops, 11th International Symposium on Combustion, Pittsburgh, pp. 715–728, 1967.
49.
go back to reference Barnea, E. and Mizrahi, J. A. Generalized approach to the fluid-dynamics of particulate systems, part 1: General correlation for fluidization and sedimentation. Chem. Eng. 5, 171–189, 1973.CrossRef Barnea, E. and Mizrahi, J. A. Generalized approach to the fluid-dynamics of particulate systems, part 1: General correlation for fluidization and sedimentation. Chem. Eng. 5, 171–189, 1973.CrossRef
50.
go back to reference Taned, S. Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers. Phys. Soc. Jpn. 11, 302–307, 1956.CrossRef Taned, S. Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers. Phys. Soc. Jpn. 11, 302–307, 1956.CrossRef
Metadata
Title
Dynamics of Liquid Droplets
Authors
A. Mashayek
N. Ashgriz
Copyright Year
2011
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7264-4_4

Premium Partners