Skip to main content
Top
Published in: Topics in Catalysis 5-8/2023

21-03-2023 | Original Paper

Effect of a High Thermal Capacitance Core–Shell Structure on Co-Ru/SiO2 Catalyst for Low Temperature Fischer–Tropsch Synthesis

Authors: Pawarat Bootpakdeetam, Frederick M. MacDonnell, Brian H. Dennis

Published in: Topics in Catalysis | Issue 5-8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Commercial cylindrical mesoporous silica pellets (3 mm diameter by 3–6 mm length) were modified by coring the pellets and inserting a 1 mm diameter copper wire along the long axis of the pellet, to give a pseudo core–shell support. While there were negligible differences in the thermal conductance of the two supports, the volumetric thermal capacitance of the core–shell support was 4.1 times greater than the unmodified silica. Fischer–Tropsch synthesis (FTS) catalysts comprised of 16 wt% Co and 1.5 wt% Ru immobilized on the native pellets (control catalyst, CT) or on the core–shell support (CS-Cu catalyst) were prepared, placed in a tubular packed-bed reactor and reduced with H2 at 400 °C. The catalysts were conditioned for FTS (255 °C; 10 atm; H2/CO = 2; GSV 510 h−1) by cooling to 150 °C, changing to a syngas atmosphere, and slowly ramping to the run temperature of 255 °C over 8 h. Measurements of the catalyst bed temperature and furnace temperature during the activation and run time revealed frequent and large temperature spikes (∆T ~ 70 °C) in the CT bed, especially in the first 12 h of operation. In comparison, runs using the CS-Cu catalyst experienced fewer and less substantive temperature spikes (∆T ~ 30 °C). From the thermal data and the FTS productivity data, it was clear that the CT catalyst experienced a substantially greater degree to deactivation due to the thermal spikes than the CS-Cu catalysts. At similar conversions, the CS-Cu showed 50% greater productivity (gproduct/gCoh) and a small but reproducible improvement in C5+ selectivity (52–55 wt%). Notably, the CS-Cu catalyst gave an appreciably smaller amount of the olefinic product (3 vs 15%). The thermal capacitance of the CS-Cu clearly moderates the negative consequences of local exotherms in the catalyst bed, especially during the activation phase of the FTS run.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Dry ME (1982) Catalytic aspects of industrial Fischer-Tropsch synthesis. J Mol Catal 17:133–144CrossRef Dry ME (1982) Catalytic aspects of industrial Fischer-Tropsch synthesis. J Mol Catal 17:133–144CrossRef
2.
go back to reference Davis BH (2005) Fischer-Tropsch synthesis: overview of reactor development and further potentialities. Top Catal 32:143–168CrossRef Davis BH (2005) Fischer-Tropsch synthesis: overview of reactor development and further potentialities. Top Catal 32:143–168CrossRef
3.
go back to reference Krishna R, Sie S (2000) Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Process Technol 64:73–105CrossRef Krishna R, Sie S (2000) Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Process Technol 64:73–105CrossRef
4.
go back to reference Satterfield CN, Huff GA, Stenger HG (1985) A comparison of Fischer-Tropsch synthesis in a fixed bed reactor and in a slurry reactor. Ind Eng Chem Fundam 24:450–454CrossRef Satterfield CN, Huff GA, Stenger HG (1985) A comparison of Fischer-Tropsch synthesis in a fixed bed reactor and in a slurry reactor. Ind Eng Chem Fundam 24:450–454CrossRef
5.
go back to reference Zhu X, Lu X, Liu X, Hildebrandt D, Glasser D (2014) Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts. Chem Eng J 247:75–84CrossRef Zhu X, Lu X, Liu X, Hildebrandt D, Glasser D (2014) Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts. Chem Eng J 247:75–84CrossRef
6.
go back to reference Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A 138:319–344CrossRef Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A 138:319–344CrossRef
7.
go back to reference Dictor RA, Bell AT (1986) Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. J Catal 97:121–136CrossRef Dictor RA, Bell AT (1986) Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. J Catal 97:121–136CrossRef
8.
go back to reference Philippe R, Lacroix M, Dreibine L, Pham-Huu C, Edouard D, Savin S, Luck F, Schweich D (2009) Effect of structure and thermal properties of a Fischer-Tropsch catalyst in a fixed bed. Catal Today 147S:S305–S312CrossRef Philippe R, Lacroix M, Dreibine L, Pham-Huu C, Edouard D, Savin S, Luck F, Schweich D (2009) Effect of structure and thermal properties of a Fischer-Tropsch catalyst in a fixed bed. Catal Today 147S:S305–S312CrossRef
9.
go back to reference Dry ME (1990) The Fischer-tropsch process—commercial aspects. Catal Today 6:183–206CrossRef Dry ME (1990) The Fischer-tropsch process—commercial aspects. Catal Today 6:183–206CrossRef
10.
go back to reference Schulz H, van Steen E, Claeys M (1995) Specific inhibition as the kinetic principle of the Fischer-Tropsch synthesis. Top Catal 2:223–234CrossRef Schulz H, van Steen E, Claeys M (1995) Specific inhibition as the kinetic principle of the Fischer-Tropsch synthesis. Top Catal 2:223–234CrossRef
11.
go back to reference Visconti CG, Tronconi E, Lietti L, Forzatti P, Rossini S, Zdnnaro R (2011) Detailed kinematics of the Fischer-Tropsch synthesis on cobalt catalysts based on H-assisted CO activation. Top Catal 54:786–800CrossRef Visconti CG, Tronconi E, Lietti L, Forzatti P, Rossini S, Zdnnaro R (2011) Detailed kinematics of the Fischer-Tropsch synthesis on cobalt catalysts based on H-assisted CO activation. Top Catal 54:786–800CrossRef
12.
go back to reference Ma W, Jacobs G, Gao P, Jermwongratanachai T, Shafer WD, Pendyala VRR, Yen CH, Klettlinger JLS, Davis BH (2014) Fischer-Tropsch synthesis: pore size and Zr promotional effects on the activity and selectivity of 25%Co/Al2O3 catalysts. Appl Catal A 475:314–324CrossRef Ma W, Jacobs G, Gao P, Jermwongratanachai T, Shafer WD, Pendyala VRR, Yen CH, Klettlinger JLS, Davis BH (2014) Fischer-Tropsch synthesis: pore size and Zr promotional effects on the activity and selectivity of 25%Co/Al2O3 catalysts. Appl Catal A 475:314–324CrossRef
13.
go back to reference He L, Teng B, Zhang Y, Fan M (2015) Development of composited rare-earth promoted cobalt-based Fischer-Tropsch synthesis catalysts with high activity and selectivity. Appl Catal A 505:276–283CrossRef He L, Teng B, Zhang Y, Fan M (2015) Development of composited rare-earth promoted cobalt-based Fischer-Tropsch synthesis catalysts with high activity and selectivity. Appl Catal A 505:276–283CrossRef
14.
go back to reference Iglesia E, Soled SL, Baumgartner JE, Reyes SC (1995) Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis. J Catal 2:108–122CrossRef Iglesia E, Soled SL, Baumgartner JE, Reyes SC (1995) Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis. J Catal 2:108–122CrossRef
15.
go back to reference Chen C, Yuuda H, Li X (2011) Fischer-Tropsch synthesis over one eggshell-type Co/SiO2 catalyst in a slurry phase reactor. Appl Catal A 396:116–122CrossRef Chen C, Yuuda H, Li X (2011) Fischer-Tropsch synthesis over one eggshell-type Co/SiO2 catalyst in a slurry phase reactor. Appl Catal A 396:116–122CrossRef
16.
go back to reference Gardezi SA, Landrigan L, Joseph B, Wolan JT (2012) Synthesis of tailored wa cobalt catalysts for Fischer-Tropsch synthesis using wet chemisistry techniques. Ind Eng Chem Res 51:1703–1712CrossRef Gardezi SA, Landrigan L, Joseph B, Wolan JT (2012) Synthesis of tailored wa cobalt catalysts for Fischer-Tropsch synthesis using wet chemisistry techniques. Ind Eng Chem Res 51:1703–1712CrossRef
17.
go back to reference Gardezi SA, Wolan JT, Joseph B (2012) Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO2 catalysts for Fischer-Tropsch synthesis. Appl Catal A 447–448:151–163CrossRef Gardezi SA, Wolan JT, Joseph B (2012) Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO2 catalysts for Fischer-Tropsch synthesis. Appl Catal A 447–448:151–163CrossRef
18.
go back to reference Fratalocchi L, Visconti CG, Lietti L, Tronconi E, Cornaro U, Rossini S (2015) A novel preparation method for “small” eggshell Co/-Al2O3 catalysts: a promising catalytic system for compact Fischer-Tropsch reactors. Catal Today 246:125–132CrossRef Fratalocchi L, Visconti CG, Lietti L, Tronconi E, Cornaro U, Rossini S (2015) A novel preparation method for “small” eggshell Co/-Al2O3 catalysts: a promising catalytic system for compact Fischer-Tropsch reactors. Catal Today 246:125–132CrossRef
19.
go back to reference Wang D, Chen C, Wang J, Jia L, Hou B, Li D (2016) High thermal conductive core-shell structured Al2O3@Al composite supported cobalt catalyst for Fischer-Tropsch synthesis. Appl Catal A 527:60–71CrossRef Wang D, Chen C, Wang J, Jia L, Hou B, Li D (2016) High thermal conductive core-shell structured Al2O3@Al composite supported cobalt catalyst for Fischer-Tropsch synthesis. Appl Catal A 527:60–71CrossRef
20.
go back to reference Li K, Cheng X, Li N, Zhu X, Wei Y, Zhai K, Wang H (2017) A yolk/shell strategy for designing hybrid phase change material for heat management in catalytic reactions. J Mater Chem A 5:24232–24246CrossRef Li K, Cheng X, Li N, Zhu X, Wei Y, Zhai K, Wang H (2017) A yolk/shell strategy for designing hybrid phase change material for heat management in catalytic reactions. J Mater Chem A 5:24232–24246CrossRef
21.
go back to reference Sheng M, Yang H, Cahela DR, Yantz WR Jr, Gonzalez CF, Tatarchuk BJ (2012) High conductivity catalyst structures for applications in exothermic reactions. Appl Catal A 445–446:143–152CrossRef Sheng M, Yang H, Cahela DR, Yantz WR Jr, Gonzalez CF, Tatarchuk BJ (2012) High conductivity catalyst structures for applications in exothermic reactions. Appl Catal A 445–446:143–152CrossRef
22.
go back to reference Park JC, Roh NS, Chun DH, Jung H, Yang JI (2014) Cobalt catalyst coated metallic foam and heat-exchanger type reactor for Fischer-Tropsch synthesis. Fuel Process Technol 119:60–66CrossRef Park JC, Roh NS, Chun DH, Jung H, Yang JI (2014) Cobalt catalyst coated metallic foam and heat-exchanger type reactor for Fischer-Tropsch synthesis. Fuel Process Technol 119:60–66CrossRef
23.
go back to reference Asalieva E, Gryaznov K, Kulchakovskaya E, Ermolaev I, Sineva L, Mordkovich V (2015) Fischer-Tropsch synthesis on cobalt-based catalyst with different thermally conductive additives. Appl Catal A 505:260–266CrossRef Asalieva E, Gryaznov K, Kulchakovskaya E, Ermolaev I, Sineva L, Mordkovich V (2015) Fischer-Tropsch synthesis on cobalt-based catalyst with different thermally conductive additives. Appl Catal A 505:260–266CrossRef
24.
go back to reference Fratalocchi L, Visconti CG, Groppi G, Tronconi E (2018) Intensifying heat transfer in Fischer-Tropsch tubular reactors through the adoption of conductive packed foams. Chem Eng J 349:829–837CrossRef Fratalocchi L, Visconti CG, Groppi G, Tronconi E (2018) Intensifying heat transfer in Fischer-Tropsch tubular reactors through the adoption of conductive packed foams. Chem Eng J 349:829–837CrossRef
25.
go back to reference Fratalocchi L, Visconti CG, Groppi G, Tronconi E (2020) Adoption of 3D printed highly conductive periodic open cellular structures as an effective solution to enhance the heat transfer performances of compact Fischer-Tropsch fixed-bed reactors. Chem Eng J 386:123988CrossRef Fratalocchi L, Visconti CG, Groppi G, Tronconi E (2020) Adoption of 3D printed highly conductive periodic open cellular structures as an effective solution to enhance the heat transfer performances of compact Fischer-Tropsch fixed-bed reactors. Chem Eng J 386:123988CrossRef
26.
go back to reference Merino D, Sanz O, Montes M (2017) Effect of the thermal conductivity and catalyst layer thickness on the Fishcer-Tropsch synthesis selectivity using structured catalysts. Chem Eng J 327:1033–1042CrossRef Merino D, Sanz O, Montes M (2017) Effect of the thermal conductivity and catalyst layer thickness on the Fishcer-Tropsch synthesis selectivity using structured catalysts. Chem Eng J 327:1033–1042CrossRef
27.
go back to reference Yang JI, Yang JH, Kim HJ, Jung HCDH, Lee HT (2010) Highly effective cobalt catalyst for wax production in Fischer-Tropsch synthesis. Fuel 89:237–243CrossRef Yang JI, Yang JH, Kim HJ, Jung HCDH, Lee HT (2010) Highly effective cobalt catalyst for wax production in Fischer-Tropsch synthesis. Fuel 89:237–243CrossRef
28.
go back to reference ASTM Standard E1269–11, 2018, “Standard test method for determining specific heat capacity by differential scanning calorimetry,” ASTM International, West Conshohocken, PA, 2015. ASTM Standard E1269–11, 2018, “Standard test method for determining specific heat capacity by differential scanning calorimetry,” ASTM International, West Conshohocken, PA, 2015.
29.
go back to reference Maxwell JC (1970) Theory of heat. Greenwood Press Maxwell JC (1970) Theory of heat. Greenwood Press
31.
go back to reference ten Have IC, Weckhuysen BM (2021) The active phase in cobalt-based Fischer-Tropsch synthesis. Chem Catal 1(2):339–363CrossRef ten Have IC, Weckhuysen BM (2021) The active phase in cobalt-based Fischer-Tropsch synthesis. Chem Catal 1(2):339–363CrossRef
32.
go back to reference Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal Sci Technol 4(8):2210–2229CrossRef Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal Sci Technol 4(8):2210–2229CrossRef
33.
go back to reference Jung J-S, Lee J-S, Choi G, Ramesh S, Moon DJ (2015) The characterization of micro-structure of cobalt on g-Al2O3 for FTS: effects of pretreatment on Ru-Co/ g-Al2O3. Fuel 149:118–129CrossRef Jung J-S, Lee J-S, Choi G, Ramesh S, Moon DJ (2015) The characterization of micro-structure of cobalt on g-Al2O3 for FTS: effects of pretreatment on Ru-Co/ g-Al2O3. Fuel 149:118–129CrossRef
34.
go back to reference Karaca H, Safonova OV, Chambrey S, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Khodakov AY (2011) Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis. J Catal 277:14–26CrossRef Karaca H, Safonova OV, Chambrey S, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Khodakov AY (2011) Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis. J Catal 277:14–26CrossRef
35.
go back to reference Liu J-X, Su H-Y, Sun D-P, Zhang B-Y, Li W-X (2013) Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC. J Am Chem Soc 135(44):16284–16287CrossRefPubMed Liu J-X, Su H-Y, Sun D-P, Zhang B-Y, Li W-X (2013) Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC. J Am Chem Soc 135(44):16284–16287CrossRefPubMed
36.
go back to reference Huff GA Jr, Satterfield CN (1985) Liquid accumulation in catalyst pores in a Fischer-Tropsch fixed-bed reactor. Ind Eng Chem Process Des Dev 24:986–995CrossRef Huff GA Jr, Satterfield CN (1985) Liquid accumulation in catalyst pores in a Fischer-Tropsch fixed-bed reactor. Ind Eng Chem Process Des Dev 24:986–995CrossRef
37.
go back to reference Yang R, Chen G (2005) Thermal conductivity modeling of core-shell and tubular nanowires. Nano Lett 5:1111–1115CrossRefPubMed Yang R, Chen G (2005) Thermal conductivity modeling of core-shell and tubular nanowires. Nano Lett 5:1111–1115CrossRefPubMed
38.
go back to reference Prasher R (2006) Thermal conductivity of tubular and core/shell nanowires. Appl Phys Lett 89:63121CrossRef Prasher R (2006) Thermal conductivity of tubular and core/shell nanowires. Appl Phys Lett 89:63121CrossRef
39.
go back to reference Sheng M, Yang H, Cahela DR, Tatarchuk BJ (2011) Novel catalyst structures with enhanced heat transfer characteristics. J Catal 281:254–262CrossRef Sheng M, Yang H, Cahela DR, Tatarchuk BJ (2011) Novel catalyst structures with enhanced heat transfer characteristics. J Catal 281:254–262CrossRef
40.
go back to reference Bao J, Tsubaki N (2012) Core-shell catalysts and bimodal catalysts for Fischer-Tropsch synthesis. Catalysis 25:216–245 Bao J, Tsubaki N (2012) Core-shell catalysts and bimodal catalysts for Fischer-Tropsch synthesis. Catalysis 25:216–245
Metadata
Title
Effect of a High Thermal Capacitance Core–Shell Structure on Co-Ru/SiO2 Catalyst for Low Temperature Fischer–Tropsch Synthesis
Authors
Pawarat Bootpakdeetam
Frederick M. MacDonnell
Brian H. Dennis
Publication date
21-03-2023
Publisher
Springer US
Published in
Topics in Catalysis / Issue 5-8/2023
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-023-01797-5

Other articles of this Issue 5-8/2023

Topics in Catalysis 5-8/2023 Go to the issue

Preface

Preface

Premium Partners