Skip to main content
Top
Published in: Topics in Catalysis 5-8/2023

13-08-2022 | Original Paper

Effect of Preparation Conditions on Precipitated Iron-Based Catalysts for High-Temperature Fischer–Tropsch Synthesis of Light Olefins

Authors: Yi Yang, Haitao Zhang, Hongfang Ma, Weixin Qian, Qiwen Sun, Weiyong Ying

Published in: Topics in Catalysis | Issue 5-8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A series of catalysts prepared by precipitation method were used to investigate the effects of preparation conditions on iron-based catalysts for high-temperature Fischer–Tropsch synthesis (HTFT) of light olefins. In this study, we varied the titration methods (forward precipitation, concurrent precipitation, and reverse precipitation), iron precursors [Fe(NO3)3, Fe2(SO4)3, and FeCl3], precipitants (ammonium carbonate, sodium carbonate, ammonia solution, sodium hydroxide, and potassium hydroxide), precipitation pH values (pH = 6.0, 7.0, 8.0, and 9.0), precipitation temperature (temperature = 25 °C, 45 °C, 65 °C, 75 °C, and 85 °C) and incorporation manners of Mn promoter (precipitation and incipient wetness impregnation method). It was demonstrated that different preparation conditions affect the BET specific surface area, pore structure, the morphology and dispersion of the catalyst, grain size, reduction ability, and CO adsorption ability of the catalyst, which in turn affect the activity of the catalyst and the production of light olefins during the HTFT. The results showed that the iron-based catalysts with the optimum catalytic performance and production of light olefins were prepared under the following conditions: ammonium carbonate as the precipitant and ferric trichloride as the iron precursor by concurrent precipitation method at pH 8.0 and 65 °C, followed by the introduction of Mn promoter by precipitation method. Catalysts were characterized by Ar adsorption–desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), H2 temperature-programmed reduction (H2-TPR), and CO-temperature-programmed desorption (CO-TPD).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Davidson AL, Webb PB, Silverwood IP, Lennon D (2020) The application of quasi-elastic neutron scattering to investigate hydrogen diffusion in an iron-based Fischer-Tropsch synthesis catalyst. Top Catal 63(3–4):378–385CrossRef Davidson AL, Webb PB, Silverwood IP, Lennon D (2020) The application of quasi-elastic neutron scattering to investigate hydrogen diffusion in an iron-based Fischer-Tropsch synthesis catalyst. Top Catal 63(3–4):378–385CrossRef
2.
go back to reference Liu Y, Deng D, Bao X (2020) Catalysis for selected C1 chemistry. Chem 6(10):2497–2514CrossRef Liu Y, Deng D, Bao X (2020) Catalysis for selected C1 chemistry. Chem 6(10):2497–2514CrossRef
3.
go back to reference Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335(6070):835–838CrossRef Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335(6070):835–838CrossRef
4.
go back to reference Toncón Leal CF, Amaya Roncancio S, García Blanco AA, Moreno MS, Sapag K (2019) Confined iron nanoparticles on mesoporous ordered silica for Fischer-Tropsch synthesis. Top Catal 62(12–16):1086–1095CrossRef Toncón Leal CF, Amaya Roncancio S, García Blanco AA, Moreno MS, Sapag K (2019) Confined iron nanoparticles on mesoporous ordered silica for Fischer-Tropsch synthesis. Top Catal 62(12–16):1086–1095CrossRef
5.
go back to reference Xue Y, Liu Z, Zhang Y, Duan S, Chen J (2021) Effect of the valence state of iron in the precursors on the Fischer-Tropsch synthesis performance of an Fe/Fe foam catalyst. Ind Eng Chem Res 60(6):2410–2417CrossRef Xue Y, Liu Z, Zhang Y, Duan S, Chen J (2021) Effect of the valence state of iron in the precursors on the Fischer-Tropsch synthesis performance of an Fe/Fe foam catalyst. Ind Eng Chem Res 60(6):2410–2417CrossRef
6.
go back to reference Zhao M, Cui Y, Sun J, Zhang Q (2018) Modified iron catalyst for direct synthesis of light olefin from syngas. Catal Today 316:142–148CrossRef Zhao M, Cui Y, Sun J, Zhang Q (2018) Modified iron catalyst for direct synthesis of light olefin from syngas. Catal Today 316:142–148CrossRef
7.
go back to reference Motjope TR, Dlamini HT, Hearne GR, Coville NJ (2002) Application of in situ Mössbauer spectroscopy to investigate the effect of precipitating agents on precipitated iron Fischer-Tropsch catalysts. Catal Today 71(3):335–341CrossRef Motjope TR, Dlamini HT, Hearne GR, Coville NJ (2002) Application of in situ Mössbauer spectroscopy to investigate the effect of precipitating agents on precipitated iron Fischer-Tropsch catalysts. Catal Today 71(3):335–341CrossRef
8.
go back to reference Mai K, Elder T, Groom LH, Spivey JJ (2015) Fe-based Fischer Tropsch synthesis of biomass-derived syngas: effect of synthesis method. Catal Commun 65:76–80CrossRef Mai K, Elder T, Groom LH, Spivey JJ (2015) Fe-based Fischer Tropsch synthesis of biomass-derived syngas: effect of synthesis method. Catal Commun 65:76–80CrossRef
9.
go back to reference Torres Galvis HM, Koeken ACJ, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2013) Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins. Catal Today 215:95–102CrossRef Torres Galvis HM, Koeken ACJ, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2013) Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins. Catal Today 215:95–102CrossRef
10.
go back to reference Wei Y, Luo D, Zhang C, Liu J, He Y, Wen X, Yang Y, Li Y (2018) Precursor controlled synthesis of graphene oxide supported iron catalysts for Fischer-Tropsch synthesis. Catal Sci Technol 8(11):2883–2893CrossRef Wei Y, Luo D, Zhang C, Liu J, He Y, Wen X, Yang Y, Li Y (2018) Precursor controlled synthesis of graphene oxide supported iron catalysts for Fischer-Tropsch synthesis. Catal Sci Technol 8(11):2883–2893CrossRef
12.
go back to reference Feyzi M, Hassankhani A (2011) Synthesis, characterization and catalytic performance of nanosized iron-cobalt catalysts for light olefins production. J Nat Gas Chem 20(6):677–686CrossRef Feyzi M, Hassankhani A (2011) Synthesis, characterization and catalytic performance of nanosized iron-cobalt catalysts for light olefins production. J Nat Gas Chem 20(6):677–686CrossRef
13.
go back to reference Wu X, Ma H, Zhang H, Qian W, Liu D, Sun Q, Ying W (2019) High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe3O4@MnO2 core–shell catalysts. Ind Eng Chem Res 58(47):21350–21362CrossRef Wu X, Ma H, Zhang H, Qian W, Liu D, Sun Q, Ying W (2019) High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe3O4@MnO2 core–shell catalysts. Ind Eng Chem Res 58(47):21350–21362CrossRef
14.
go back to reference Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069CrossRef Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069CrossRef
15.
go back to reference Ahn C, Bae JW (2016) Fischer-Tropsch synthesis on the Al2O3-modified ordered mesoporous Co3O4 with an enhanced catalytic activity and stability. Catal Today 265:27–35CrossRef Ahn C, Bae JW (2016) Fischer-Tropsch synthesis on the Al2O3-modified ordered mesoporous Co3O4 with an enhanced catalytic activity and stability. Catal Today 265:27–35CrossRef
16.
go back to reference Han Z, Qian W, Zhang H, Ma H, Sun Q, Ying W (2020) Effect of rare-earth promoters on precipitated iron-based catalysts for Fischer-Tropsch synthesis. Ind Eng Chem Res 59(33):14598–14605CrossRef Han Z, Qian W, Zhang H, Ma H, Sun Q, Ying W (2020) Effect of rare-earth promoters on precipitated iron-based catalysts for Fischer-Tropsch synthesis. Ind Eng Chem Res 59(33):14598–14605CrossRef
17.
go back to reference Pendyala VRR, Graham UM, Jacobs G, Hamdeh HH, Davis BH (2014) Fischer-Tropsch synthesis: morphology, phase transformation, and carbon-layer growth of iron-based catalysts. ChemCatChem 6(7):1952–1960CrossRef Pendyala VRR, Graham UM, Jacobs G, Hamdeh HH, Davis BH (2014) Fischer-Tropsch synthesis: morphology, phase transformation, and carbon-layer growth of iron-based catalysts. ChemCatChem 6(7):1952–1960CrossRef
18.
go back to reference Gu M, Dai S, Qiu R, Ford ME, Cao C, Wachs IE, Zhu M (2021) Structure–activity relationships of copper- and potassium-modified iron oxide catalysts during reverse water–gas shift reaction. ACS Catal 11(20):12609–12619CrossRef Gu M, Dai S, Qiu R, Ford ME, Cao C, Wachs IE, Zhu M (2021) Structure–activity relationships of copper- and potassium-modified iron oxide catalysts during reverse water–gas shift reaction. ACS Catal 11(20):12609–12619CrossRef
19.
go back to reference Li J, Cheng X, Zhang C, Wang J, Dong W, Yang Y, Li Y (2017) Alkalis in iron-based Fischer-Tropsch synthesis catalysts: distribution, migration and promotion. J Chem Technol Biotechnol 92(6):1472–1480CrossRef Li J, Cheng X, Zhang C, Wang J, Dong W, Yang Y, Li Y (2017) Alkalis in iron-based Fischer-Tropsch synthesis catalysts: distribution, migration and promotion. J Chem Technol Biotechnol 92(6):1472–1480CrossRef
20.
go back to reference Ma Z, Ma H, Zhang H, Wu X, Qian W, Sun Q, Ying W (2021) Direct conversion of syngas to light olefins through Fischer-Tropsch synthesis over Fe–Zr catalysts modified with sodium. ACS Omega 6(7):4968–4976CrossRefPubMedPubMedCentral Ma Z, Ma H, Zhang H, Wu X, Qian W, Sun Q, Ying W (2021) Direct conversion of syngas to light olefins through Fischer-Tropsch synthesis over Fe–Zr catalysts modified with sodium. ACS Omega 6(7):4968–4976CrossRefPubMedPubMedCentral
21.
go back to reference Chang Q, Zhang C, Liu C, Wei Y, Cheruvathur AV, Dugulan AI, Niemantsverdriet JW, Liu X, He Y, Qing M, Zheng L, Yun Y, Yang Y, Li Y (2018) Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts. ACS Catal 8(4):3304–3316CrossRef Chang Q, Zhang C, Liu C, Wei Y, Cheruvathur AV, Dugulan AI, Niemantsverdriet JW, Liu X, He Y, Qing M, Zheng L, Yun Y, Yang Y, Li Y (2018) Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts. ACS Catal 8(4):3304–3316CrossRef
22.
go back to reference Opeyemi Otun K, Yao Y, Liu X, Hildebrandt D (2021) Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: a critical review. Fuel 296:120689CrossRef Opeyemi Otun K, Yao Y, Liu X, Hildebrandt D (2021) Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: a critical review. Fuel 296:120689CrossRef
23.
go back to reference Petersen MA, van Rensburg WJ (2015) CO dissociation at vacancy sites on Hägg iron carbide: direct versus hydrogen-assisted routes investigated with DFT. Top Catal 58(10–11):665–674CrossRef Petersen MA, van Rensburg WJ (2015) CO dissociation at vacancy sites on Hägg iron carbide: direct versus hydrogen-assisted routes investigated with DFT. Top Catal 58(10–11):665–674CrossRef
24.
go back to reference Hayakawa H, Tanaka H, Fujimoto K (2007) Preparation of a new precipitated iron catalyst for Fischer-Tropsch synthesis. Catal Commun 8(11):1820–1824CrossRef Hayakawa H, Tanaka H, Fujimoto K (2007) Preparation of a new precipitated iron catalyst for Fischer-Tropsch synthesis. Catal Commun 8(11):1820–1824CrossRef
25.
go back to reference Mishra T, Parida KM (2006) Effect of sulfate on the surface and catalytic properties of iron–chromium mixed oxide pillared clay. J Colloid Interface Sci 301(2):554–559CrossRefPubMed Mishra T, Parida KM (2006) Effect of sulfate on the surface and catalytic properties of iron–chromium mixed oxide pillared clay. J Colloid Interface Sci 301(2):554–559CrossRefPubMed
26.
go back to reference Li T, Yang Y, Tao Z, Wan H, An X, Zhang C, Xiang H, Li Y (2007) Effect of sulfate on an iron manganese catalyst for Fischer-Tropsch synthesis. J Nat Gas Chem 16(4):354–362CrossRef Li T, Yang Y, Tao Z, Wan H, An X, Zhang C, Xiang H, Li Y (2007) Effect of sulfate on an iron manganese catalyst for Fischer-Tropsch synthesis. J Nat Gas Chem 16(4):354–362CrossRef
27.
go back to reference Xu J, Chang Z, Zhu K, Weng X, Weng W, Zheng Y, Huang C, Wan H (2016) Effect of sulfur on α-Al2O3-supported iron catalyst for Fischer-Tropsch synthesis. Appl Catal A 514:103–113CrossRef Xu J, Chang Z, Zhu K, Weng X, Weng W, Zheng Y, Huang C, Wan H (2016) Effect of sulfur on α-Al2O3-supported iron catalyst for Fischer-Tropsch synthesis. Appl Catal A 514:103–113CrossRef
28.
go back to reference Wu X, Qian W, Ma H, Zhang H, Liu D, Sun Q, Ying W (2019) Li-decorated Fe-Mn nanocatalyst for high-temperature Fischer-Tropsch synthesis of light olefins. Fuel 257:120567CrossRef Wu X, Qian W, Ma H, Zhang H, Liu D, Sun Q, Ying W (2019) Li-decorated Fe-Mn nanocatalyst for high-temperature Fischer-Tropsch synthesis of light olefins. Fuel 257:120567CrossRef
29.
go back to reference Yang S, Chun H, Lee S, Han S, Lee K, Kim Y (2020) Comparative study of olefin production from CO and CO2 using Na- and K-promoted zinc ferrite. ACS Catal 10(18):10742–10759CrossRef Yang S, Chun H, Lee S, Han S, Lee K, Kim Y (2020) Comparative study of olefin production from CO and CO2 using Na- and K-promoted zinc ferrite. ACS Catal 10(18):10742–10759CrossRef
30.
go back to reference Yang Y, Xiang H, Xu Y, Bai L, Li Y (2004) Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis. Appl Catal A 266(2):181–194CrossRef Yang Y, Xiang H, Xu Y, Bai L, Li Y (2004) Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis. Appl Catal A 266(2):181–194CrossRef
31.
go back to reference Liu Y, Chen J, Bao J, Zhang Y (2015) Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS Catal 5(6):3905–3909CrossRef Liu Y, Chen J, Bao J, Zhang Y (2015) Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS Catal 5(6):3905–3909CrossRef
Metadata
Title
Effect of Preparation Conditions on Precipitated Iron-Based Catalysts for High-Temperature Fischer–Tropsch Synthesis of Light Olefins
Authors
Yi Yang
Haitao Zhang
Hongfang Ma
Weixin Qian
Qiwen Sun
Weiyong Ying
Publication date
13-08-2022
Publisher
Springer US
Published in
Topics in Catalysis / Issue 5-8/2023
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-022-01684-5

Other articles of this Issue 5-8/2023

Topics in Catalysis 5-8/2023 Go to the issue

Premium Partners