Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 3/2020

25-05-2020 | ORIGINAL ARTICLE

Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry

Authors: Ahmad Alghamdi, Tobias Maconachie, David Downing, Milan Brandt, Ma Qian, Martin Leary

Published in: The International Journal of Advanced Manufacturing Technology | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal additive manufacturing (MAM) enables the fabrication of structures with complexity and resolution that cannot be achieved by traditional manufacturing techniques, including lattice structures. However, MAM processes inherently induce local manufacturing defects, resulting in variation between the idealised and as-manufactured geometry and potentially introducing stress concentrations that are detrimental to structural performance. Quantification of these effects on mechanical performance enables the manipulation of intended lattice geometry to enhance structural performance. However, due to the geometric complexity and small scale of geometric defects, experimental testing and numerical simulation of lattice structures are technically difficult and time-consuming. To overcome this limitation, a novel methodology for quantifying the effect of manufacturing defects on the mechanical properties of MAM lattice structural elements is proposed. This method involves the automated analysis of microscope images of as-manufactured lattice structures to generate numerical models that automate the identification of plastic hinge behaviour in node elements based on custom MAM material properties. This method is applied to Ti-6Al-4V lattice structures fabricated by selective laser melting (SLM) with a range of strut and node diameters and cell sizes. This novel method is shown to predict the effect of local manufacturing defects on bulk lattice mechanical response and provides an efficient tool for the optimisation of as-manufactured MAM lattice structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Inclination angle is the angle between the build platen and a downward-facing surface.
 
Literature
1.
go back to reference Zhang XZ et al (2018) Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Curr Opinion Solid State Mater Sci 22(3):75–99CrossRef Zhang XZ et al (2018) Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Curr Opinion Solid State Mater Sci 22(3):75–99CrossRef
2.
go back to reference Maconachie T et al (2019) SLM lattice structures: properties, performance, applications and challenges. Mater Des 183:108137CrossRef Maconachie T et al (2019) SLM lattice structures: properties, performance, applications and challenges. Mater Des 183:108137CrossRef
3.
go back to reference Tao W and Leu MC. (2016) Design of lattice structure for additive manufacturing. In International Symposium on Flexible Automation (ISFA). 2016. Tao W and Leu MC. (2016) Design of lattice structure for additive manufacturing. In International Symposium on Flexible Automation (ISFA). 2016.
4.
go back to reference Zadpoor AA (2018) Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater Zadpoor AA (2018) Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater
5.
go back to reference Gong H, et al. The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. In 24th annual international solid freeform fabrication symposium - an additive manufacturing conference. Austin, Texas. Gong H, et al. The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. In 24th annual international solid freeform fabrication symposium - an additive manufacturing conference. Austin, Texas.
6.
go back to reference Sarker A et al (2018) Angle defines attachment: switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting. Mater Des 154:326–339CrossRef Sarker A et al (2018) Angle defines attachment: switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting. Mater Des 154:326–339CrossRef
7.
go back to reference Fotovvati B, Asadi E (2019) Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4V ELI parts. Int J Adv Manuf Technol 104(5):2951–2959CrossRef Fotovvati B, Asadi E (2019) Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4V ELI parts. Int J Adv Manuf Technol 104(5):2951–2959CrossRef
8.
go back to reference Dallago M et al (2018) Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices. Proc Struct Integr 13:161–167CrossRef Dallago M et al (2018) Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices. Proc Struct Integr 13:161–167CrossRef
9.
go back to reference Van Bael S et al (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A 528(24):7423–7431CrossRef Van Bael S et al (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A 528(24):7423–7431CrossRef
10.
go back to reference Gibson LJ and Ashby MF, (1999) Cellular solids: structure and properties. Cambridge university press. Gibson LJ and Ashby MF, (1999) Cellular solids: structure and properties. Cambridge university press.
11.
go back to reference Xiao Z et al (2018) Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Mater Des 143:27–37CrossRef Xiao Z et al (2018) Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Mater Des 143:27–37CrossRef
12.
go back to reference Banhart J (2000) Manufacturing routes for metallic foams. Jom 52(12):22–27CrossRef Banhart J (2000) Manufacturing routes for metallic foams. Jom 52(12):22–27CrossRef
13.
go back to reference He M, Hu W (2008) A study on composite honeycomb sandwich panel structure. Mater Des 29(3):709–713CrossRef He M, Hu W (2008) A study on composite honeycomb sandwich panel structure. Mater Des 29(3):709–713CrossRef
14.
go back to reference Yan C et al (2014) Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol 214(4):856–864CrossRef Yan C et al (2014) Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol 214(4):856–864CrossRef
15.
go back to reference Leary M et al (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357CrossRef Leary M et al (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357CrossRef
16.
go back to reference Yan C et al (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541CrossRef Yan C et al (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541CrossRef
17.
go back to reference Vandenbroucke B, Kruth J-P (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203CrossRef Vandenbroucke B, Kruth J-P (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203CrossRef
18.
go back to reference Leary M et al (2019) Mechanical and thermal characterisation of AlSi10Mg SLM block support structures. Mater Des 183:108138CrossRef Leary M et al (2019) Mechanical and thermal characterisation of AlSi10Mg SLM block support structures. Mater Des 183:108138CrossRef
19.
go back to reference Wauthle R et al (2015) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84 Wauthle R et al (2015) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84
20.
go back to reference Yavari SA et al (2015) Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater 43:91–100CrossRef Yavari SA et al (2015) Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater 43:91–100CrossRef
21.
go back to reference Santorinaios M, et al., (2006) Crush behaviour of open cellular lattice structures manufactured using selective laser melting. WIT Trans Built Environ 85. Santorinaios M, et al., (2006) Crush behaviour of open cellular lattice structures manufactured using selective laser melting. WIT Trans Built Environ 85.
22.
go back to reference Yan C et al (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38CrossRef Yan C et al (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38CrossRef
23.
go back to reference Fox JC, Moylan SP, Lane BM (2016) Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia CIRP 45:131–134CrossRef Fox JC, Moylan SP, Lane BM (2016) Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia CIRP 45:131–134CrossRef
24.
go back to reference Leary M (2017) 4 - Surface roughness optimisation for selective laser melting (SLM): accommodating relevant and irrelevant surfaces, in Laser Additive Manufacturing, M. Brandt, Editor, Woodhead Publishing. p. 99-118. Leary M (2017) 4 - Surface roughness optimisation for selective laser melting (SLM): accommodating relevant and irrelevant surfaces, in Laser Additive Manufacturing, M. Brandt, Editor, Woodhead Publishing. p. 99-118.
25.
go back to reference Mullen L et al (2010) Selective laser melting: a unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures. J Biomed Mater Res B Appl Biomater 92B(1):178–188CrossRef Mullen L et al (2010) Selective laser melting: a unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures. J Biomed Mater Res B Appl Biomater 92B(1):178–188CrossRef
26.
go back to reference Islam M et al (2013) Temperature profile and imaging analysis of laser additive manufacturing of stainless steel. Phys Procedia 41:835–842CrossRef Islam M et al (2013) Temperature profile and imaging analysis of laser additive manufacturing of stainless steel. Phys Procedia 41:835–842CrossRef
27.
go back to reference Kurzynowski T, et al. (2012) Parameters in selective laser melting for processing metallic powders. In Proceedings of SPIE - The International Society for Optical Engineering Kurzynowski T, et al. (2012) Parameters in selective laser melting for processing metallic powders. In Proceedings of SPIE - The International Society for Optical Engineering
28.
go back to reference Bächle M, Kohal RJ (2004) A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Eine systematische Uebersicht über den Einfluss von verschiedenen Titanoberflächen auf die Proliferation, Differenzierung und Proteinsynthese von osteoblastenähnlichen MG63 Zellen. Clin Oral Implants Res 15(6):683–692CrossRef Bächle M, Kohal RJ (2004) A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Eine systematische Uebersicht über den Einfluss von verschiedenen Titanoberflächen auf die Proliferation, Differenzierung und Proteinsynthese von osteoblastenähnlichen MG63 Zellen. Clin Oral Implants Res 15(6):683–692CrossRef
29.
go back to reference Deligianni DD et al (2000) Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22(1):87–96CrossRef Deligianni DD et al (2000) Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22(1):87–96CrossRef
30.
go back to reference Lincks J et al (1998) Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19(23):2219–2232CrossRef Lincks J et al (1998) Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19(23):2219–2232CrossRef
31.
go back to reference Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20:172–184CrossRef Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20:172–184CrossRef
32.
go back to reference Kim HJ et al (2005) Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. J Biomed Mater Res A 74A(3):366–373CrossRef Kim HJ et al (2005) Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. J Biomed Mater Res A 74A(3):366–373CrossRef
33.
go back to reference Bowers KT et al (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7(3):302–310 Bowers KT et al (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7(3):302–310
34.
go back to reference Jemat A et al (2015) Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015:791725CrossRef Jemat A et al (2015) Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015:791725CrossRef
35.
go back to reference Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef
36.
go back to reference Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87(1):647–656CrossRef Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87(1):647–656CrossRef
37.
go back to reference Ali H et al (2017) In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater Sci Eng A 695:211–220CrossRef Ali H et al (2017) In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater Sci Eng A 695:211–220CrossRef
38.
go back to reference McMillan M et al (2015) Programmatic lattice generation for additive manufacture. Procedia Technology 20:178–184CrossRef McMillan M et al (2015) Programmatic lattice generation for additive manufacture. Procedia Technology 20:178–184CrossRef
39.
go back to reference Downing D et al (2020) Heat transfer in lattice structures during metal additive manufacturing: numerical exploration of temperature field evolution. Rapid Prototyp J Downing D et al (2020) Heat transfer in lattice structures during metal additive manufacturing: numerical exploration of temperature field evolution. Rapid Prototyp J
40.
go back to reference Xu W et al (2017) In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater 125:390–400CrossRef Xu W et al (2017) In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater 125:390–400CrossRef
41.
go back to reference Gorenc B, et al. (2005) Steel designers’ handbook. UNSW Press. Gorenc B, et al. (2005) Steel designers’ handbook. UNSW Press.
42.
go back to reference Feng Q et al (2016) An investigation into the quasi-static response of Ti6al4V lattice structures manufactured using selective laser melting, in Smart Innovation. Systems and Technologies 52:399–409 Feng Q et al (2016) An investigation into the quasi-static response of Ti6al4V lattice structures manufactured using selective laser melting, in Smart Innovation. Systems and Technologies 52:399–409
43.
go back to reference Fotovvati B, Namdari N, Dehghanghadikolaei A (2018) Fatigue performance of selective laser melted Ti6Al4V components: state of the art. Materials research express 6(1):012002CrossRef Fotovvati B, Namdari N, Dehghanghadikolaei A (2018) Fatigue performance of selective laser melted Ti6Al4V components: state of the art. Materials research express 6(1):012002CrossRef
44.
go back to reference Mazur M et al (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84(5):1391–1411 Mazur M et al (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84(5):1391–1411
45.
go back to reference Fotovvati B, Etesami SA, Asadi E (2019) Process-property-geometry correlations for additively-manufactured Ti–6Al–4V sheets. Mater Sci Eng A 760:431–447CrossRef Fotovvati B, Etesami SA, Asadi E (2019) Process-property-geometry correlations for additively-manufactured Ti–6Al–4V sheets. Mater Sci Eng A 760:431–447CrossRef
Metadata
Title
Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry
Authors
Ahmad Alghamdi
Tobias Maconachie
David Downing
Milan Brandt
Ma Qian
Martin Leary
Publication date
25-05-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 3/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05394-8

Other articles of this Issue 3/2020

The International Journal of Advanced Manufacturing Technology 3/2020 Go to the issue

Premium Partners