Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 3/2020

25.05.2020 | ORIGINAL ARTICLE

Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry

verfasst von: Ahmad Alghamdi, Tobias Maconachie, David Downing, Milan Brandt, Ma Qian, Martin Leary

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal additive manufacturing (MAM) enables the fabrication of structures with complexity and resolution that cannot be achieved by traditional manufacturing techniques, including lattice structures. However, MAM processes inherently induce local manufacturing defects, resulting in variation between the idealised and as-manufactured geometry and potentially introducing stress concentrations that are detrimental to structural performance. Quantification of these effects on mechanical performance enables the manipulation of intended lattice geometry to enhance structural performance. However, due to the geometric complexity and small scale of geometric defects, experimental testing and numerical simulation of lattice structures are technically difficult and time-consuming. To overcome this limitation, a novel methodology for quantifying the effect of manufacturing defects on the mechanical properties of MAM lattice structural elements is proposed. This method involves the automated analysis of microscope images of as-manufactured lattice structures to generate numerical models that automate the identification of plastic hinge behaviour in node elements based on custom MAM material properties. This method is applied to Ti-6Al-4V lattice structures fabricated by selective laser melting (SLM) with a range of strut and node diameters and cell sizes. This novel method is shown to predict the effect of local manufacturing defects on bulk lattice mechanical response and provides an efficient tool for the optimisation of as-manufactured MAM lattice structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Inclination angle is the angle between the build platen and a downward-facing surface.
 
Literatur
1.
Zurück zum Zitat Zhang XZ et al (2018) Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Curr Opinion Solid State Mater Sci 22(3):75–99CrossRef Zhang XZ et al (2018) Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Curr Opinion Solid State Mater Sci 22(3):75–99CrossRef
2.
Zurück zum Zitat Maconachie T et al (2019) SLM lattice structures: properties, performance, applications and challenges. Mater Des 183:108137CrossRef Maconachie T et al (2019) SLM lattice structures: properties, performance, applications and challenges. Mater Des 183:108137CrossRef
3.
Zurück zum Zitat Tao W and Leu MC. (2016) Design of lattice structure for additive manufacturing. In International Symposium on Flexible Automation (ISFA). 2016. Tao W and Leu MC. (2016) Design of lattice structure for additive manufacturing. In International Symposium on Flexible Automation (ISFA). 2016.
4.
Zurück zum Zitat Zadpoor AA (2018) Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater Zadpoor AA (2018) Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater
5.
Zurück zum Zitat Gong H, et al. The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. In 24th annual international solid freeform fabrication symposium - an additive manufacturing conference. Austin, Texas. Gong H, et al. The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. In 24th annual international solid freeform fabrication symposium - an additive manufacturing conference. Austin, Texas.
6.
Zurück zum Zitat Sarker A et al (2018) Angle defines attachment: switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting. Mater Des 154:326–339CrossRef Sarker A et al (2018) Angle defines attachment: switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting. Mater Des 154:326–339CrossRef
7.
Zurück zum Zitat Fotovvati B, Asadi E (2019) Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4V ELI parts. Int J Adv Manuf Technol 104(5):2951–2959CrossRef Fotovvati B, Asadi E (2019) Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4V ELI parts. Int J Adv Manuf Technol 104(5):2951–2959CrossRef
8.
Zurück zum Zitat Dallago M et al (2018) Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices. Proc Struct Integr 13:161–167CrossRef Dallago M et al (2018) Effect of the geometrical defectiveness on the mechanical properties of SLM biomedical Ti6Al4V lattices. Proc Struct Integr 13:161–167CrossRef
9.
Zurück zum Zitat Van Bael S et al (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A 528(24):7423–7431CrossRef Van Bael S et al (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A 528(24):7423–7431CrossRef
10.
Zurück zum Zitat Gibson LJ and Ashby MF, (1999) Cellular solids: structure and properties. Cambridge university press. Gibson LJ and Ashby MF, (1999) Cellular solids: structure and properties. Cambridge university press.
11.
Zurück zum Zitat Xiao Z et al (2018) Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Mater Des 143:27–37CrossRef Xiao Z et al (2018) Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Mater Des 143:27–37CrossRef
12.
Zurück zum Zitat Banhart J (2000) Manufacturing routes for metallic foams. Jom 52(12):22–27CrossRef Banhart J (2000) Manufacturing routes for metallic foams. Jom 52(12):22–27CrossRef
13.
Zurück zum Zitat He M, Hu W (2008) A study on composite honeycomb sandwich panel structure. Mater Des 29(3):709–713CrossRef He M, Hu W (2008) A study on composite honeycomb sandwich panel structure. Mater Des 29(3):709–713CrossRef
14.
Zurück zum Zitat Yan C et al (2014) Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol 214(4):856–864CrossRef Yan C et al (2014) Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol 214(4):856–864CrossRef
15.
Zurück zum Zitat Leary M et al (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357CrossRef Leary M et al (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Des 98:344–357CrossRef
16.
Zurück zum Zitat Yan C et al (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541CrossRef Yan C et al (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541CrossRef
17.
Zurück zum Zitat Vandenbroucke B, Kruth J-P (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203CrossRef Vandenbroucke B, Kruth J-P (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203CrossRef
18.
Zurück zum Zitat Leary M et al (2019) Mechanical and thermal characterisation of AlSi10Mg SLM block support structures. Mater Des 183:108138CrossRef Leary M et al (2019) Mechanical and thermal characterisation of AlSi10Mg SLM block support structures. Mater Des 183:108138CrossRef
19.
Zurück zum Zitat Wauthle R et al (2015) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84 Wauthle R et al (2015) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84
20.
Zurück zum Zitat Yavari SA et al (2015) Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater 43:91–100CrossRef Yavari SA et al (2015) Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater 43:91–100CrossRef
21.
Zurück zum Zitat Santorinaios M, et al., (2006) Crush behaviour of open cellular lattice structures manufactured using selective laser melting. WIT Trans Built Environ 85. Santorinaios M, et al., (2006) Crush behaviour of open cellular lattice structures manufactured using selective laser melting. WIT Trans Built Environ 85.
22.
Zurück zum Zitat Yan C et al (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38CrossRef Yan C et al (2012) Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 62:32–38CrossRef
23.
Zurück zum Zitat Fox JC, Moylan SP, Lane BM (2016) Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia CIRP 45:131–134CrossRef Fox JC, Moylan SP, Lane BM (2016) Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia CIRP 45:131–134CrossRef
24.
Zurück zum Zitat Leary M (2017) 4 - Surface roughness optimisation for selective laser melting (SLM): accommodating relevant and irrelevant surfaces, in Laser Additive Manufacturing, M. Brandt, Editor, Woodhead Publishing. p. 99-118. Leary M (2017) 4 - Surface roughness optimisation for selective laser melting (SLM): accommodating relevant and irrelevant surfaces, in Laser Additive Manufacturing, M. Brandt, Editor, Woodhead Publishing. p. 99-118.
25.
Zurück zum Zitat Mullen L et al (2010) Selective laser melting: a unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures. J Biomed Mater Res B Appl Biomater 92B(1):178–188CrossRef Mullen L et al (2010) Selective laser melting: a unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications. II. Randomized structures. J Biomed Mater Res B Appl Biomater 92B(1):178–188CrossRef
26.
Zurück zum Zitat Islam M et al (2013) Temperature profile and imaging analysis of laser additive manufacturing of stainless steel. Phys Procedia 41:835–842CrossRef Islam M et al (2013) Temperature profile and imaging analysis of laser additive manufacturing of stainless steel. Phys Procedia 41:835–842CrossRef
27.
Zurück zum Zitat Kurzynowski T, et al. (2012) Parameters in selective laser melting for processing metallic powders. In Proceedings of SPIE - The International Society for Optical Engineering Kurzynowski T, et al. (2012) Parameters in selective laser melting for processing metallic powders. In Proceedings of SPIE - The International Society for Optical Engineering
28.
Zurück zum Zitat Bächle M, Kohal RJ (2004) A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Eine systematische Uebersicht über den Einfluss von verschiedenen Titanoberflächen auf die Proliferation, Differenzierung und Proteinsynthese von osteoblastenähnlichen MG63 Zellen. Clin Oral Implants Res 15(6):683–692CrossRef Bächle M, Kohal RJ (2004) A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Eine systematische Uebersicht über den Einfluss von verschiedenen Titanoberflächen auf die Proliferation, Differenzierung und Proteinsynthese von osteoblastenähnlichen MG63 Zellen. Clin Oral Implants Res 15(6):683–692CrossRef
29.
Zurück zum Zitat Deligianni DD et al (2000) Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22(1):87–96CrossRef Deligianni DD et al (2000) Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22(1):87–96CrossRef
30.
Zurück zum Zitat Lincks J et al (1998) Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19(23):2219–2232CrossRef Lincks J et al (1998) Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19(23):2219–2232CrossRef
31.
Zurück zum Zitat Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20:172–184CrossRef Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20:172–184CrossRef
32.
Zurück zum Zitat Kim HJ et al (2005) Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. J Biomed Mater Res A 74A(3):366–373CrossRef Kim HJ et al (2005) Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. J Biomed Mater Res A 74A(3):366–373CrossRef
33.
Zurück zum Zitat Bowers KT et al (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7(3):302–310 Bowers KT et al (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7(3):302–310
34.
Zurück zum Zitat Jemat A et al (2015) Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015:791725CrossRef Jemat A et al (2015) Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015:791725CrossRef
35.
Zurück zum Zitat Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef
36.
Zurück zum Zitat Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87(1):647–656CrossRef Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87(1):647–656CrossRef
37.
Zurück zum Zitat Ali H et al (2017) In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater Sci Eng A 695:211–220CrossRef Ali H et al (2017) In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater Sci Eng A 695:211–220CrossRef
38.
Zurück zum Zitat McMillan M et al (2015) Programmatic lattice generation for additive manufacture. Procedia Technology 20:178–184CrossRef McMillan M et al (2015) Programmatic lattice generation for additive manufacture. Procedia Technology 20:178–184CrossRef
39.
Zurück zum Zitat Downing D et al (2020) Heat transfer in lattice structures during metal additive manufacturing: numerical exploration of temperature field evolution. Rapid Prototyp J Downing D et al (2020) Heat transfer in lattice structures during metal additive manufacturing: numerical exploration of temperature field evolution. Rapid Prototyp J
40.
Zurück zum Zitat Xu W et al (2017) In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater 125:390–400CrossRef Xu W et al (2017) In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater 125:390–400CrossRef
41.
Zurück zum Zitat Gorenc B, et al. (2005) Steel designers’ handbook. UNSW Press. Gorenc B, et al. (2005) Steel designers’ handbook. UNSW Press.
42.
Zurück zum Zitat Feng Q et al (2016) An investigation into the quasi-static response of Ti6al4V lattice structures manufactured using selective laser melting, in Smart Innovation. Systems and Technologies 52:399–409 Feng Q et al (2016) An investigation into the quasi-static response of Ti6al4V lattice structures manufactured using selective laser melting, in Smart Innovation. Systems and Technologies 52:399–409
43.
Zurück zum Zitat Fotovvati B, Namdari N, Dehghanghadikolaei A (2018) Fatigue performance of selective laser melted Ti6Al4V components: state of the art. Materials research express 6(1):012002CrossRef Fotovvati B, Namdari N, Dehghanghadikolaei A (2018) Fatigue performance of selective laser melted Ti6Al4V components: state of the art. Materials research express 6(1):012002CrossRef
44.
Zurück zum Zitat Mazur M et al (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84(5):1391–1411 Mazur M et al (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84(5):1391–1411
45.
Zurück zum Zitat Fotovvati B, Etesami SA, Asadi E (2019) Process-property-geometry correlations for additively-manufactured Ti–6Al–4V sheets. Mater Sci Eng A 760:431–447CrossRef Fotovvati B, Etesami SA, Asadi E (2019) Process-property-geometry correlations for additively-manufactured Ti–6Al–4V sheets. Mater Sci Eng A 760:431–447CrossRef
Metadaten
Titel
Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry
verfasst von
Ahmad Alghamdi
Tobias Maconachie
David Downing
Milan Brandt
Ma Qian
Martin Leary
Publikationsdatum
25.05.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 3/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05394-8

Weitere Artikel der Ausgabe 3/2020

The International Journal of Advanced Manufacturing Technology 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.