Skip to main content
Top
Published in: Cellulose 3/2016

02-03-2016 | Original Paper

Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose

Authors: G. SriBala, Ramanaiah Chennuru, Sudarshan Mahapatra, R. Vinu

Published in: Cellulose | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, ultrasound-assisted alkaline pretreatment is developed to evaluate the morphological and structural changes that occur during pretreatment of cellulose, and its effect on glucose production via enzymatic hydrolysis. The pretreated samples were characterized using scanning electron microscopy, infrared spectroscopy, and X-ray diffraction to understand the change in surface morphology, crystallinity and the fraction of cellulose Iβ and cellulose II. The combined pretreatment led to a great disruption of cellulose particles along with the formation of large pores and partial fibrillation. The effects of ultrasound irradiation time (2, 4 h), NaOH concentration (1–10 wt%), initial particle size (20–180 μm) and initial degree of polymerization (DP) of cellulose on structural changes and glucose yields were evaluated. The alkaline ultrasonic pretreatment resulted in a significant decrease in particle size of cellulose, besides significantly reducing the treatment time and NaOH concentration required to achieve a low crystallinity of cellulose. More than 2.5 times improvement in glucose yield was observed with 10 wt% NaOH and 4 h of sonication, compared to untreated samples. The glucose yields increased with increase in initial particle size of cellulose, while DP had no effect on glucose yields. The glucose yields exhibited an increasing tendency with increase in cellulose II fraction as a result of combined pretreatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685CrossRef Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685CrossRef
go back to reference Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef
go back to reference Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRef Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRef
go back to reference Briois B, Saito T, Pétrier C, Putaux J-L, Nishiyama Y, Heux L, Molina-Boisseau S (2013) Iα → Iβ transition of cellulose under ultrasonic radiation. Cellulose 20:597–603CrossRef Briois B, Saito T, Pétrier C, Putaux J-L, Nishiyama Y, Heux L, Molina-Boisseau S (2013) Iα → Iβ transition of cellulose under ultrasonic radiation. Cellulose 20:597–603CrossRef
go back to reference Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580CrossRef Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580CrossRef
go back to reference Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011a) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145CrossRef Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011a) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145CrossRef
go back to reference Chundawat SPS, Bellesia G, Uppugundla N, Sousa LD, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011b) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174CrossRef Chundawat SPS, Bellesia G, Uppugundla N, Sousa LD, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011b) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174CrossRef
go back to reference Ciolacu D, Popa VI (2007) The correlation between the reactivity and the supramolecular structure of allomorphs of cellulose. Rev Roum Chim 52:361–366 Ciolacu D, Popa VI (2007) The correlation between the reactivity and the supramolecular structure of allomorphs of cellulose. Rev Roum Chim 52:361–366
go back to reference Ciolacu D, Pitol-Filho L, Ciolacu F (2012) Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose 19:55–68CrossRef Ciolacu D, Pitol-Filho L, Ciolacu F (2012) Studies concerning the accessibility of different allomorphic forms of cellulose. Cellulose 19:55–68CrossRef
go back to reference Fengel D, Strobel C (1994) FTIR spectroscopic studies on the heterogeneous transformation of cellulose I into cellulose II. Acta Polym 45:319–324CrossRef Fengel D, Strobel C (1994) FTIR spectroscopic studies on the heterogeneous transformation of cellulose I into cellulose II. Acta Polym 45:319–324CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and Segal crystallinity index. Cellulose 20:583–588CrossRef French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and Segal crystallinity index. Cellulose 20:583–588CrossRef
go back to reference Gao D, Chundawat SPS, Sethi A, Balan V, Gnanakaran S, Dale BE (2013) Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci 110:10922–10927CrossRef Gao D, Chundawat SPS, Sethi A, Balan V, Gnanakaran S, Dale BE (2013) Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci 110:10922–10927CrossRef
go back to reference Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17:79–83CrossRef Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17:79–83CrossRef
go back to reference Kolpak FJ, Blackwell J (1978) Mercerization of cellulose: 2. The morphology of mercerized cotton cellulose. Polymer 19:132–135CrossRef Kolpak FJ, Blackwell J (1978) Mercerization of cellulose: 2. The morphology of mercerized cotton cellulose. Polymer 19:132–135CrossRef
go back to reference Kolpak FJ, Weih M, Blackwell J (1978) Mercerization of cellulose: 1. Determination of the structure of mercerized cotton. Polymer 19:123–131CrossRef Kolpak FJ, Weih M, Blackwell J (1978) Mercerization of cellulose: 1. Determination of the structure of mercerized cotton. Polymer 19:123–131CrossRef
go back to reference Lan W, Liu C, Yue F, Sun R, Kennedy JF (2011) Ultrasound-assisted dissolution of cellulose in ionic liquid. Carbohydr Polym 86:672–677CrossRef Lan W, Liu C, Yue F, Sun R, Kennedy JF (2011) Ultrasound-assisted dissolution of cellulose in ionic liquid. Carbohydr Polym 86:672–677CrossRef
go back to reference Li Q, Ji G-S, Tang Y-B, Gu X-D, Fei J-J, Jiang H-Q (2012) Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous-N-methylmorpholine-N-oxide system for improved saccharification. Bioresour Technol 107:251–257CrossRef Li Q, Ji G-S, Tang Y-B, Gu X-D, Fei J-J, Jiang H-Q (2012) Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous-N-methylmorpholine-N-oxide system for improved saccharification. Bioresour Technol 107:251–257CrossRef
go back to reference Luo J, Fang Z, Smith RL (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93CrossRef Luo J, Fang Z, Smith RL (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93CrossRef
go back to reference Madras G, McCoy BJ (2001) Molecular-weight distribution kinetics for ultrasonic reactions of polymers. AIChE J 47:2341–2348CrossRef Madras G, McCoy BJ (2001) Molecular-weight distribution kinetics for ultrasonic reactions of polymers. AIChE J 47:2341–2348CrossRef
go back to reference Madras G, Kumar S, Chattopadhyay S (2000) Continuous distribution kinetics for ultrasonic degradation of polymers. Polym Degrad Stab 69:73–78CrossRef Madras G, Kumar S, Chattopadhyay S (2000) Continuous distribution kinetics for ultrasonic degradation of polymers. Polym Degrad Stab 69:73–78CrossRef
go back to reference Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9CrossRef Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9CrossRef
go back to reference Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef
go back to reference Ninomiya K, Ohta A, Omote S, Ogino C, Takahashi K, Shimizu N (2013) Combined use of completely bio-derived cholinium ionic liquids and ultrasound irradiation for the pretreatment of lignocellulosic material to enhance enzymatic saccharification. Chem Eng J 215–216:811–818CrossRef Ninomiya K, Ohta A, Omote S, Ogino C, Takahashi K, Shimizu N (2013) Combined use of completely bio-derived cholinium ionic liquids and ultrasound irradiation for the pretreatment of lignocellulosic material to enhance enzymatic saccharification. Chem Eng J 215–216:811–818CrossRef
go back to reference Nishimura H, Okano T, Sarko A (1991) Mercerization of cellulose. 5. Crystal and molecular structure of Na-Cellulose I. Macromolecules 24:759–770CrossRef Nishimura H, Okano T, Sarko A (1991) Mercerization of cellulose. 5. Crystal and molecular structure of Na-Cellulose I. Macromolecules 24:759–770CrossRef
go back to reference Oh SY, Yoo DIL, Shin Y, Seo G (2005) FTIR Analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428CrossRef Oh SY, Yoo DIL, Shin Y, Seo G (2005) FTIR Analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428CrossRef
go back to reference Okano T, Sarko A (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182CrossRef Okano T, Sarko A (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182CrossRef
go back to reference Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef
go back to reference Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:1–13CrossRef Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:1–13CrossRef
go back to reference Sasmal S, Goud VV, Mohanty K (2012) Ultrasound assisted lime pretreatment of lignocellulosic biomass toward bioethanol production. Energy Fuels 26:3777–3784CrossRef Sasmal S, Goud VV, Mohanty K (2012) Ultrasound assisted lime pretreatment of lignocellulosic biomass toward bioethanol production. Energy Fuels 26:3777–3784CrossRef
go back to reference Schittenhelm N, Kulicke W-M (2000) Producing homologous series of molar masses for establishing structure-property relationships with the aid of ultrasonic degradation. Macromol Chem Phys 201:1976–1984CrossRef Schittenhelm N, Kulicke W-M (2000) Producing homologous series of molar masses for establishing structure-property relationships with the aid of ultrasonic degradation. Macromol Chem Phys 201:1976–1984CrossRef
go back to reference Shi W, Li S, Jia J, Zhao Y (2013) Highly efficient conversion of cellulose to bio-oil in hot-compressed water with ultrasonic pretreatment. Ind Eng Chem Res 52:586–593CrossRef Shi W, Li S, Jia J, Zhao Y (2013) Highly efficient conversion of cellulose to bio-oil in hot-compressed water with ultrasonic pretreatment. Ind Eng Chem Res 52:586–593CrossRef
go back to reference Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87CrossRef Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87CrossRef
go back to reference Sivalingam G, Agarwal N, Madras G (2004) Distributed midpoint chain scission in ultrasonic degradation of polymers. AIChE J 50:2258–2265CrossRef Sivalingam G, Agarwal N, Madras G (2004) Distributed midpoint chain scission in ultrasonic degradation of polymers. AIChE J 50:2258–2265CrossRef
go back to reference Sousa LD, Chundawat SPS, Balan V, Dale BE (2009) Cradle-to-grave—assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347CrossRef Sousa LD, Chundawat SPS, Balan V, Dale BE (2009) Cradle-to-grave—assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347CrossRef
go back to reference SriBala G, Vinu R (2014) Unified kinetic model for cellulose deconstruction via acid hydrolysis. Ind Eng Chem Res 53:8714–8725CrossRef SriBala G, Vinu R (2014) Unified kinetic model for cellulose deconstruction via acid hydrolysis. Ind Eng Chem Res 53:8714–8725CrossRef
go back to reference Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara WB III, Mdleleni MM, Wong M (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc A 357:335–353CrossRef Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara WB III, Mdleleni MM, Wong M (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc A 357:335–353CrossRef
go back to reference Tayal A, Khan SA (2000) Degradation of a water-soluble polymer: molecular weight changes and chain scission characteristics. Macromolecules 33:9488–9493CrossRef Tayal A, Khan SA (2000) Degradation of a water-soluble polymer: molecular weight changes and chain scission characteristics. Macromolecules 33:9488–9493CrossRef
go back to reference Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123CrossRef Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123CrossRef
go back to reference Velmurugan R, Muthukumar K (2012a) Sono-assisted enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochem Eng J 63:1–9CrossRef Velmurugan R, Muthukumar K (2012a) Sono-assisted enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochem Eng J 63:1–9CrossRef
go back to reference Velmurugan R, Muthukumar K (2012b) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Bioresour Technol 112:293–299CrossRef Velmurugan R, Muthukumar K (2012b) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Bioresour Technol 112:293–299CrossRef
go back to reference Vijayalakshmi SP, Madras G (2005) Effect of initial molecular weight and solvents on the ultrasonic degradation of poly (ethylene oxide). Polym Degrad Stab 90:116–122CrossRef Vijayalakshmi SP, Madras G (2005) Effect of initial molecular weight and solvents on the ultrasonic degradation of poly (ethylene oxide). Polym Degrad Stab 90:116–122CrossRef
go back to reference Vinu R, Broadbelt LJ (2012) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5:9808–9826CrossRef Vinu R, Broadbelt LJ (2012) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5:9808–9826CrossRef
go back to reference Wallenberger FT, Weston NE (2004) Natural fibers, plastics and composites. Springer, BerlinCrossRef Wallenberger FT, Weston NE (2004) Natural fibers, plastics and composites. Springer, BerlinCrossRef
go back to reference Wong S-S, Kasapis S, Huang D (2012) Molecular weight and crystallinity alteration of cellulose via prolonged ultrasound fragmentation. Food Hydrocoll 26:365–369CrossRef Wong S-S, Kasapis S, Huang D (2012) Molecular weight and crystallinity alteration of cellulose via prolonged ultrasound fragmentation. Food Hydrocoll 26:365–369CrossRef
go back to reference Yang F, Li L, Li Q, Tan W, Liu W, Xian M (2010) Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification. Carbohydr Polym 81:311–316CrossRef Yang F, Li L, Li Q, Tan W, Liu W, Xian M (2010) Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification. Carbohydr Polym 81:311–316CrossRef
go back to reference Yunus R, Salleh SF, Abdullah N, Radiah D, Biak A (2010) Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101:9792–9796CrossRef Yunus R, Salleh SF, Abdullah N, Radiah D, Biak A (2010) Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101:9792–9796CrossRef
go back to reference Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRef Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRef
go back to reference Zhang J, Li D, Zhang X, Shi Y (1993) Solvent effect on carboxymethylation of cellulose. J Appl Polym Sci 49:741–746CrossRef Zhang J, Li D, Zhang X, Shi Y (1993) Solvent effect on carboxymethylation of cellulose. J Appl Polym Sci 49:741–746CrossRef
go back to reference Zhang Q, Benoit M, Vigier KDO, Barrault J, Jégou G, Philippe M, Jérôme F (2013) Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem 15:963–969CrossRef Zhang Q, Benoit M, Vigier KDO, Barrault J, Jégou G, Philippe M, Jérôme F (2013) Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem 15:963–969CrossRef
go back to reference Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68 Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68
Metadata
Title
Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose
Authors
G. SriBala
Ramanaiah Chennuru
Sudarshan Mahapatra
R. Vinu
Publication date
02-03-2016
Publisher
Springer Netherlands
Published in
Cellulose / Issue 3/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0893-2

Other articles of this Issue 3/2016

Cellulose 3/2016 Go to the issue