Skip to main content
Top
Published in: Journal of Iron and Steel Research International 4/2024

13-09-2023 | Original Paper

Effect of alumina occurrence form on metallurgical properties of hematite and magnetite pellets

Authors: Jian Pan, Chen-mei Tang, Cong-cong Yang, De-qing Zhu, Zheng-qi Guo, Wei-qun Huang

Published in: Journal of Iron and Steel Research International | Issue 4/2024

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of alumina occurrence form on the metallurgical properties of both hematite and magnetite pellets was investigated at the same Al2O3 level of 2 wt.%, including reduction index (RI), low-temperature reduction disintegration index (RDI), reduction swelling index (RSI), and high-temperature softening–dripping performance. The mineralogy of fired pellets was also studied to reveal the influence of alumina occurrence form on the phase composition and microstructure. From the results, the alumina occurrence form presents tremendous impacts on the metallurgical performance of both magnetite and hematite pellets. Addition of all alumina occurrence forms contributes to inferior reducibility of pellets, especially in the case of gibbsite for magnetite pellets with a RI of 58.4% and kaolinite for hematite pellets with a RI of 56.8%. However, addition of all alumina occurrence forms improves the RDI of magnetite pellets, while there is no significant difference among various alumina occurrence forms. In contrast, alumina occurrence forms have little influence on the RDI of hematite pellets. The presence of free alumina, gibbsite, and kaolinite tends to improve the RSI of hematite and magnetite pellets, whereas hercynite gives the opposite trend with a RSI of 25.6%. For softening–dripping performance of magnetite pellets, all alumina occurrence forms contribute to narrower softening–melting interval. Meanwhile, alumina, gibbsite, and kaolinite give narrower softening–dripping interval, at 229, 217, and 88 °C, respectively, whereas addition of hercynite results in the largest melting range at 276 °C due to its high melting point. Regarding hematite pellets, free alumina, gibbsite, and hercynite tend to enlarge melting range, whereas kaolinite contributes to lower dripping temperature of 1148 °C and narrow softening–dripping interval of 88 °C due to the formation of a greater amount of slag phase at high temperatures.
Literature
[1]
go back to reference F. Zhang, D.Q. Zhu, J. Pan, Z.Q. Guo, M.J. Xu, J. Iron Steel Res. Int. 27 (2020) 770–781.CrossRef F. Zhang, D.Q. Zhu, J. Pan, Z.Q. Guo, M.J. Xu, J. Iron Steel Res. Int. 27 (2020) 770–781.CrossRef
[2]
go back to reference A.B. Kotta, D. Narsimhachary, S.K. Karak, M. Kumar, Trans. Indian Inst. Met. 73 (2020) 2561–2575.CrossRef A.B. Kotta, D. Narsimhachary, S.K. Karak, M. Kumar, Trans. Indian Inst. Met. 73 (2020) 2561–2575.CrossRef
[3]
go back to reference K. Sunahara, K. Nakano, M. Hoshi, T. Inada, S. Komatsu, T. Yamamoto, ISIJ Int. 48 (2008) 420–429.CrossRef K. Sunahara, K. Nakano, M. Hoshi, T. Inada, S. Komatsu, T. Yamamoto, ISIJ Int. 48 (2008) 420–429.CrossRef
[4]
[5]
go back to reference J.L. Zhang, Z.Y. Wang, X.D. Xing, Z.J. Liu, Int. J. Miner. Metall. Mater. 21 (2014) 339–344.CrossRef J.L. Zhang, Z.Y. Wang, X.D. Xing, Z.J. Liu, Int. J. Miner. Metall. Mater. 21 (2014) 339–344.CrossRef
[6]
go back to reference Z.Q. Guo, R.N. Zhan, Y. Shi, D.Q. Zhu, J. Pan, C.C. Yang, Y.G. Wang, J. Wang, Chem. Eng. J. 456 (2023) 141157.CrossRef Z.Q. Guo, R.N. Zhan, Y. Shi, D.Q. Zhu, J. Pan, C.C. Yang, Y.G. Wang, J. Wang, Chem. Eng. J. 456 (2023) 141157.CrossRef
[7]
[8]
go back to reference Z.L. Zhang, Y. Sun, R. Chen, L.L. Li, B. Tang, Metall. Res. Technol. 117 (2020) 505.CrossRef Z.L. Zhang, Y. Sun, R. Chen, L.L. Li, B. Tang, Metall. Res. Technol. 117 (2020) 505.CrossRef
[9]
go back to reference J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, S.H. Yi, ISIJ Int. 44 (2004) 1291–1297.CrossRef J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, S.H. Yi, ISIJ Int. 44 (2004) 1291–1297.CrossRef
[10]
go back to reference Z.M. Yan, X.W. Lv, D. Liang, J. Zhang, C.G. Bai, Metall. Mater. Trans. B 48 (2017) 1092–1099.CrossRef Z.M. Yan, X.W. Lv, D. Liang, J. Zhang, C.G. Bai, Metall. Mater. Trans. B 48 (2017) 1092–1099.CrossRef
[11]
go back to reference Y.Z. Pan, H.B. Zuo, J.S. Wang, Q.G. Xue, G. Wang, X.F. She, J. Iron Steel Res. Int. 27 (2020) 121–131.CrossRef Y.Z. Pan, H.B. Zuo, J.S. Wang, Q.G. Xue, G. Wang, X.F. She, J. Iron Steel Res. Int. 27 (2020) 121–131.CrossRef
[12]
go back to reference S.K. Das, B. Das, R. Sakthivel, B.K. Mishra, Miner. Process. Extr. Metall. Rev. 31 (2010) 97–110.CrossRef S.K. Das, B. Das, R. Sakthivel, B.K. Mishra, Miner. Process. Extr. Metall. Rev. 31 (2010) 97–110.CrossRef
[13]
go back to reference D. Oliveira, S.L. Wu, Y.M. Dai, J. Xu, H. Chen, J. Iron Steel Res. Int. 19 (2012) No. 6, 1–5.CrossRef D. Oliveira, S.L. Wu, Y.M. Dai, J. Xu, H. Chen, J. Iron Steel Res. Int. 19 (2012) No. 6, 1–5.CrossRef
[14]
go back to reference L.M. Lu, Iron ore: mineralogy, processing and environmental sustainability, Woodhead Publishing, Cambridge, UK, 2015. L.M. Lu, Iron ore: mineralogy, processing and environmental sustainability, Woodhead Publishing, Cambridge, UK, 2015.
[15]
go back to reference Y.X. Xue, J. Pan, D.Q. Zhu, Z.Q. Guo, H.Y. Tian, Y. Shi, S.H. Lu, J. Mater. Res. Technol. 12 (2021) 1157–1170.CrossRef Y.X. Xue, J. Pan, D.Q. Zhu, Z.Q. Guo, H.Y. Tian, Y. Shi, S.H. Lu, J. Mater. Res. Technol. 12 (2021) 1157–1170.CrossRef
[16]
go back to reference N.A.S. Webster, D.P. O'dea, B.G. Ellis, M.I. Pownceby, ISIJ Int. 57 (2017) 41–47.CrossRef N.A.S. Webster, D.P. O'dea, B.G. Ellis, M.I. Pownceby, ISIJ Int. 57 (2017) 41–47.CrossRef
[17]
go back to reference J.J. Dong, G. Wang, Y.G. Gong, Q.G. Xue, J.S. Wang, Ironmak. Steelmak. 42 (2015) 34–40.CrossRef J.J. Dong, G. Wang, Y.G. Gong, Q.G. Xue, J.S. Wang, Ironmak. Steelmak. 42 (2015) 34–40.CrossRef
[18]
go back to reference J.G. Lu, C.C. Lan, Q. Lyu, S.H. Zhang, J.N. Sun, Int. J. Miner. Metall. Mater. 28 (2021) 629–636.CrossRef J.G. Lu, C.C. Lan, Q. Lyu, S.H. Zhang, J.N. Sun, Int. J. Miner. Metall. Mater. 28 (2021) 629–636.CrossRef
[19]
go back to reference Z.Y. Wang, X.D. Xing, J.L. Zhang, in: Proceedings of the Ninth China Iron and Steel Annual Conference, The Chinese Society for Metals, Beijing, China, 2013, pp. 382–387. Z.Y. Wang, X.D. Xing, J.L. Zhang, in: Proceedings of the Ninth China Iron and Steel Annual Conference, The Chinese Society for Metals, Beijing, China, 2013, pp. 382–387.
[20]
go back to reference Z. Wei, J. Zhang, B.P. Qin, Y. Dong, Y. Lu, Y. Li, W.X. Hao, Y.F. Zhang, Powder Technol. 332 (2018) 18–26.CrossRef Z. Wei, J. Zhang, B.P. Qin, Y. Dong, Y. Lu, Y. Li, W.X. Hao, Y.F. Zhang, Powder Technol. 332 (2018) 18–26.CrossRef
[21]
go back to reference Z.P. Zhu, T. Jiang, G.H. Li, Y.F. Guo, Y.B. Yang, Thermodynamics of reactions among Al2O3, CaO, SiO2 and Fe2O3 during roasting processes, in: J.C. Moreno Piraján (Eds.), Thermodynamics-Interaction Studies-Solids, Liquids and Gases. IntechOpen, 2011. https://doi.org/10.5772/21545. Z.P. Zhu, T. Jiang, G.H. Li, Y.F. Guo, Y.B. Yang, Thermodynamics of reactions among Al2O3, CaO, SiO2 and Fe2O3 during roasting processes, in: J.C. Moreno Piraján (Eds.), Thermodynamics-Interaction Studies-Solids, Liquids and Gases. IntechOpen, 2011. https://​doi.​org/​10.​5772/​21545.
[22]
go back to reference Y.F. Guo, K. Liu, F. Chen, S.H. Wang, F.Q. Zheng, L.Z. Yang, Y.J. Liu, Powder Technol. 393 (2021) 291–300.CrossRef Y.F. Guo, K. Liu, F. Chen, S.H. Wang, F.Q. Zheng, L.Z. Yang, Y.J. Liu, Powder Technol. 393 (2021) 291–300.CrossRef
[23]
go back to reference W. Zhao, M.S. Chu, C. Feng, H.T. Wang, Z.G. Liu, J. Tang, W.P. Wang, Ironmak. Steelmak. 47 (2020) 388–397.CrossRef W. Zhao, M.S. Chu, C. Feng, H.T. Wang, Z.G. Liu, J. Tang, W.P. Wang, Ironmak. Steelmak. 47 (2020) 388–397.CrossRef
[25]
go back to reference T. Jiang, G.Q. He, G.H. Li, X.H. Fan, Z.X. Cui, Iron and Steel 42 (2007) No. 5, 7–11. T. Jiang, G.Q. He, G.H. Li, X.H. Fan, Z.X. Cui, Iron and Steel 42 (2007) No. 5, 7–11.
[26]
go back to reference T. Simmonds, The high temperature decomposition of hematite under reactive gas atmospheres: for use in chemical looping combustion, The University of Queensland, Australia, 2017. T. Simmonds, The high temperature decomposition of hematite under reactive gas atmospheres: for use in chemical looping combustion, The University of Queensland, Australia, 2017.
[27]
[28]
go back to reference Z.C. Yang, Z.G. Liu, M.S. Chu, L.H. Gao, C. Feng, J. Tang, ISIJ Int. 61 (2021) 1431–1438.CrossRef Z.C. Yang, Z.G. Liu, M.S. Chu, L.H. Gao, C. Feng, J. Tang, ISIJ Int. 61 (2021) 1431–1438.CrossRef
[29]
go back to reference K. Kanbara, T. Hagiwara, A. Shigemi, S.I. Kondo, Y. Kanayama, K.I. Wakabayashi, N. Hiramoto, Tetsu-to-Hagane 62 (1976) 535–546.CrossRef K. Kanbara, T. Hagiwara, A. Shigemi, S.I. Kondo, Y. Kanayama, K.I. Wakabayashi, N. Hiramoto, Tetsu-to-Hagane 62 (1976) 535–546.CrossRef
[30]
go back to reference Y. Shimomura, K. Nishikawa, S. Arino, T. Katayama, Y. Hida, T. Isoyama, Tetsu-to-Hagane 62 (1976) 547–558.CrossRef Y. Shimomura, K. Nishikawa, S. Arino, T. Katayama, Y. Hida, T. Isoyama, Tetsu-to-Hagane 62 (1976) 547–558.CrossRef
[31]
go back to reference M. Hino, T. Nagasaka, A. Katsumata, K.I. Higuchi, K. Yamaguchi, N. Kon-No, Metall. Mater. Trans. B 30 (1999) 671–683.CrossRef M. Hino, T. Nagasaka, A. Katsumata, K.I. Higuchi, K. Yamaguchi, N. Kon-No, Metall. Mater. Trans. B 30 (1999) 671–683.CrossRef
Metadata
Title
Effect of alumina occurrence form on metallurgical properties of hematite and magnetite pellets
Authors
Jian Pan
Chen-mei Tang
Cong-cong Yang
De-qing Zhu
Zheng-qi Guo
Wei-qun Huang
Publication date
13-09-2023
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 4/2024
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-01066-5

Other articles of this Issue 4/2024

Journal of Iron and Steel Research International 4/2024 Go to the issue

Premium Partners