Skip to main content
Top
Published in: Journal of Materials Science 12/2018

12-03-2018 | Electronic materials

Effect of annealing on microstructure and thermoelectric properties of hot-extruded Bi–Sb–Te bulk materials

Authors: Zhi-Lei Wang, Takehiro Araki, Tetsuhiko Onda, Zhong-Chun Chen

Published in: Journal of Materials Science | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of annealing on the microstructure, thermoelectric properties and hardness of the hot-extruded Bi–Sb–Te materials has been investigated systematically to optimize their thermoelectric and mechanical properties. The mechanically alloyed powder was consolidated by hot extrusion at either 340 or 400 °C, followed by annealing in a temperature range of 260–400 °C. The microstructure of the annealed samples contained submicron grains with preferred (001) texture. As annealing temperature increased, the small-angle grain boundaries (SAGBs) increased because the increased amount of Te-rich and Sb-rich phases inhibits the movements of dislocations and SAGBs. The submicron microstructure led to a low thermal conductivity, for example, ~ 0.9 W/mK after annealing at TA ≥ 380 °C. The Seebeck coefficient highly depended on carrier mobility in addition to carrier concentration. For the extruded samples prepared at a lower extrusion temperature of 340 °C, the mobility increased significantly after annealing, resulting in great enhancements in the Seebeck coefficient and electrical conductivity. A peak ZT value of 0.94 and high hardness were simultaneously obtained under the conditions of hot extrusion at 340 °C and annealing at 380 °C. It seems that the combination of low-temperature extrusion and high-temperature annealing is an effective route to prepare high-performance Bi2Te3-based materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Disalvo FJ (1999) Thermoelectric cooling and power generation. Science 285:703–706CrossRef Disalvo FJ (1999) Thermoelectric cooling and power generation. Science 285:703–706CrossRef
3.
go back to reference Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidiset MG (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418CrossRef Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidiset MG (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418CrossRef
4.
go back to reference Bachmann M, Czerner M, Heiliger C (2012) Ineffectiveness of energy filtering at grain boundaries for thermoelectric materials. Phys Rev B 86:115320CrossRef Bachmann M, Czerner M, Heiliger C (2012) Ineffectiveness of energy filtering at grain boundaries for thermoelectric materials. Phys Rev B 86:115320CrossRef
5.
go back to reference Amatya R, Ram RJ (2012) Trend for thermoelectric materials and their earth abundance. J Electron Mater 41:1011–1019CrossRef Amatya R, Ram RJ (2012) Trend for thermoelectric materials and their earth abundance. J Electron Mater 41:1011–1019CrossRef
6.
go back to reference Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479CrossRef Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:466–479CrossRef
7.
go back to reference Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRef Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRef
8.
go back to reference Im JT, Hartwig KT, Sharp J (2004) Microstructural refinement of cast p-type Bi2Te3–Sb2Te3 by equal channel angular extrusion. Acta Mater 52:49–55CrossRef Im JT, Hartwig KT, Sharp J (2004) Microstructural refinement of cast p-type Bi2Te3–Sb2Te3 by equal channel angular extrusion. Acta Mater 52:49–55CrossRef
9.
go back to reference Weise JR, Muller L (1960) Lattice constants of Bi2Te3–Bi2Se3 solid solution alloys. J Phys Chem Solids 15:13CrossRef Weise JR, Muller L (1960) Lattice constants of Bi2Te3–Bi2Se3 solid solution alloys. J Phys Chem Solids 15:13CrossRef
10.
go back to reference Schulz LG (1949) A direct method of determining preferred orientation of a flat reflection sample using a geiger counter X-ray spectrometer. J Appl Phys 20:1030–1033CrossRef Schulz LG (1949) A direct method of determining preferred orientation of a flat reflection sample using a geiger counter X-ray spectrometer. J Appl Phys 20:1030–1033CrossRef
11.
go back to reference Taylor PJ, Maddux JR, Jesser WA, Rosi FD (1999) Room-temperature anisotropic, thermoelectric, and electrical properties of n-type (Bi2Te3)90(Sb2Te3)5(Sb2Se3)5 and compensated p-type (Sb2Te3)72(Bi2Te3)25(Sb2Se3)3 semiconductor alloys. J Appl Phys 85:7807–7813CrossRef Taylor PJ, Maddux JR, Jesser WA, Rosi FD (1999) Room-temperature anisotropic, thermoelectric, and electrical properties of n-type (Bi2Te3)90(Sb2Te3)5(Sb2Se3)5 and compensated p-type (Sb2Te3)72(Bi2Te3)25(Sb2Se3)3 semiconductor alloys. J Appl Phys 85:7807–7813CrossRef
12.
go back to reference Yim WM, Rosi FD (1972) Compound tellurides and their alloys for peltier cooling—a review. Solid State Electron 15:1121CrossRef Yim WM, Rosi FD (1972) Compound tellurides and their alloys for peltier cooling—a review. Solid State Electron 15:1121CrossRef
13.
go back to reference Yang JY, Aizawa T, Yamamoto A, Ohtab T (2000) Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1−x prepared by bulk mechanical alloying and hot pressing. J Alloys Compd 312:326–330CrossRef Yang JY, Aizawa T, Yamamoto A, Ohtab T (2000) Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1−x prepared by bulk mechanical alloying and hot pressing. J Alloys Compd 312:326–330CrossRef
14.
go back to reference Boulanger C (2010) Thermoelectric material electroplating: a historical review. J Electron Mater 39:1818–1827CrossRef Boulanger C (2010) Thermoelectric material electroplating: a historical review. J Electron Mater 39:1818–1827CrossRef
15.
go back to reference Jiang J, Chen LD, Bai SQ, Yao Q (2005) Thermoelectric performance of p-type Bi–Sb–Te materials prepared by spark plasma sintering. J Alloys Compd 390:208–211CrossRef Jiang J, Chen LD, Bai SQ, Yao Q (2005) Thermoelectric performance of p-type Bi–Sb–Te materials prepared by spark plasma sintering. J Alloys Compd 390:208–211CrossRef
16.
go back to reference Soni A, Shen Y, Yin M, Zhao Y, Yu L, Hu X, Dong ZL, Khor KA, Dresselhaus MS, Xiong QH (2012) Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett 12:4305–4310CrossRef Soni A, Shen Y, Yin M, Zhao Y, Yu L, Hu X, Dong ZL, Khor KA, Dresselhaus MS, Xiong QH (2012) Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett 12:4305–4310CrossRef
17.
go back to reference Chen ZC, Suzuki K, Miura S, Nishimura K, Ikeda K (2009) Microstructural features and deformation-induced lattice defects in hot-extruded Bi2Te3 thermoelectric compound. Mater Sci Eng A 500:70–78CrossRef Chen ZC, Suzuki K, Miura S, Nishimura K, Ikeda K (2009) Microstructural features and deformation-induced lattice defects in hot-extruded Bi2Te3 thermoelectric compound. Mater Sci Eng A 500:70–78CrossRef
18.
go back to reference Kim SS, Yamamoto S, Aizawa T (2004) Thermoelectric properties of anisotropy-controlled p-type Bi-Te-Sb system via bulk mechanical alloying and shear extrusion. J Alloys Compd 375:107–113CrossRef Kim SS, Yamamoto S, Aizawa T (2004) Thermoelectric properties of anisotropy-controlled p-type Bi-Te-Sb system via bulk mechanical alloying and shear extrusion. J Alloys Compd 375:107–113CrossRef
19.
go back to reference Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638CrossRef Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren ZF (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638CrossRef
20.
go back to reference Wang ZL, Akao T, Onda T, Chen ZC (2016) Microstructure and thermoelectric properties of hot-extruded Bi–Te–Se bulk materials. J Alloys Compd 663:134–139CrossRef Wang ZL, Akao T, Onda T, Chen ZC (2016) Microstructure and thermoelectric properties of hot-extruded Bi–Te–Se bulk materials. J Alloys Compd 663:134–139CrossRef
21.
go back to reference Wang ZL, Araki T, Onda T, Chen ZC (2017) Microstructure and its influence on thermoelectric properties of hot-extruded Bi–Sb–Te bulk materials. Scripta Mater 141:89–93CrossRef Wang ZL, Araki T, Onda T, Chen ZC (2017) Microstructure and its influence on thermoelectric properties of hot-extruded Bi–Sb–Te bulk materials. Scripta Mater 141:89–93CrossRef
22.
go back to reference Navrátil J, Starý Z, Plecháček T (1996) Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater Res Bull 31:1559–1566CrossRef Navrátil J, Starý Z, Plecháček T (1996) Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater Res Bull 31:1559–1566CrossRef
23.
go back to reference Zhao LD, Zhang BP, Liu WS, Zhang HL, Li JF (2009) Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd 467:91–97CrossRef Zhao LD, Zhang BP, Liu WS, Zhang HL, Li JF (2009) Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd 467:91–97CrossRef
24.
go back to reference Lee DH, Lee JU, Jung SJ, Baek SH, Kim JH, Kim DI, Hyun DB, Kim JS (2014) Effect of heat treatment on the thermoelectric properties of Bismuth–Antimony–Telluride prepared by mechanical deformation and mechanical alloying. J Electron Mater 43:2255–2261CrossRef Lee DH, Lee JU, Jung SJ, Baek SH, Kim JH, Kim DI, Hyun DB, Kim JS (2014) Effect of heat treatment on the thermoelectric properties of Bismuth–Antimony–Telluride prepared by mechanical deformation and mechanical alloying. J Electron Mater 43:2255–2261CrossRef
25.
go back to reference Kim DH, Lee GH (2006) Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering. Mater Sci Eng B 131:106–110CrossRef Kim DH, Lee GH (2006) Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering. Mater Sci Eng B 131:106–110CrossRef
26.
go back to reference Wang X, He H, Wang N, Miao L (2013) Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering. Appl Surf Sci 276:539–542CrossRef Wang X, He H, Wang N, Miao L (2013) Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering. Appl Surf Sci 276:539–542CrossRef
27.
go back to reference Huang H, Luan W, Tu S (2009) Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering. Thin Solid Films 517:3731–3734CrossRef Huang H, Luan W, Tu S (2009) Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering. Thin Solid Films 517:3731–3734CrossRef
28.
go back to reference Zhao Y, Dyck JS, Hernandez BM, Burda C (2010) Improving thermoelectric properties of chemically synthesized Bi2Te3-based nanocrystals by annealing. J Phys Chem C 114:11607–11613CrossRef Zhao Y, Dyck JS, Hernandez BM, Burda C (2010) Improving thermoelectric properties of chemically synthesized Bi2Te3-based nanocrystals by annealing. J Phys Chem C 114:11607–11613CrossRef
29.
go back to reference Cai ZK, Fan P, Zheng ZH, Liu PJ, Chen TB, Cai XM, Luo JT, Liang GX, Zhang DP (2013) Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film. Appl Surf Sci 280:225–228CrossRef Cai ZK, Fan P, Zheng ZH, Liu PJ, Chen TB, Cai XM, Luo JT, Liang GX, Zhang DP (2013) Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film. Appl Surf Sci 280:225–228CrossRef
30.
go back to reference Suga Y (1966) Thermoelectric semiconductor. Makisyoten, Tokyo Suga Y (1966) Thermoelectric semiconductor. Makisyoten, Tokyo
31.
go back to reference Liu WS, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang DZ, Chen G, Ren ZF (2011) Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater 1:577–587CrossRef Liu WS, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, Wang DZ, Chen G, Ren ZF (2011) Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater 1:577–587CrossRef
32.
go back to reference Hamachiyo T, Ashida M, Hasezaki K (2009) Thermal conductivity of Bi0.5Sb1.5Te3 affected by grain size and pores. J Electron Mater 38:1048–1051CrossRef Hamachiyo T, Ashida M, Hasezaki K (2009) Thermal conductivity of Bi0.5Sb1.5Te3 affected by grain size and pores. J Electron Mater 38:1048–1051CrossRef
33.
go back to reference Brown A, Lewis B (1962) The systems bismuth-tellurium and antimony-tellurium and the synthesis of the minerals hedleyite and wehrlite. J Phys Chem Solids 23:1597–1604CrossRef Brown A, Lewis B (1962) The systems bismuth-tellurium and antimony-tellurium and the synthesis of the minerals hedleyite and wehrlite. J Phys Chem Solids 23:1597–1604CrossRef
34.
go back to reference Wang ZL, Akao T, Onda T, Chen ZC (2016) Formation of Te-rich phase and its effect on microstructure and thermoelectric properties of hot-extruded Bi–Te–Se bulk materials. J Alloys Compd 684:516–523CrossRef Wang ZL, Akao T, Onda T, Chen ZC (2016) Formation of Te-rich phase and its effect on microstructure and thermoelectric properties of hot-extruded Bi–Te–Se bulk materials. J Alloys Compd 684:516–523CrossRef
35.
go back to reference Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J Inorg Chem 9:113–123 Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J Inorg Chem 9:113–123
36.
go back to reference Ge ZH, Ji YH, Qiu Y, Chong XY, Feng J, He J (2018) Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process. Scripta Mater 143:90–93CrossRef Ge ZH, Ji YH, Qiu Y, Chong XY, Feng J, He J (2018) Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process. Scripta Mater 143:90–93CrossRef
37.
go back to reference Tayon W, Crooks R, Domack M, Wagner J, Elmustafa AA (2010) EBSD study of delamination fracture in Al–Li Alloy 2090. Exp Mech 50:135–143CrossRef Tayon W, Crooks R, Domack M, Wagner J, Elmustafa AA (2010) EBSD study of delamination fracture in Al–Li Alloy 2090. Exp Mech 50:135–143CrossRef
38.
go back to reference Hu L, Zhu T, Liu X, Zhao X (2014) Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater 24:5211–5218CrossRef Hu L, Zhu T, Liu X, Zhao X (2014) Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater 24:5211–5218CrossRef
39.
go back to reference Pan Y, Wei TR, Wu CF, Li JF (2015) Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3–xSex alloys: the combined effect of point defect and Se content. J Mater Chem C 3:10583–10589CrossRef Pan Y, Wei TR, Wu CF, Li JF (2015) Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3–xSex alloys: the combined effect of point defect and Se content. J Mater Chem C 3:10583–10589CrossRef
40.
go back to reference Rai-Choudhury P, Hower PL (1973) Growth and characterization of polycrystalline silicon. J Electrochem Soc 120:1761–1766CrossRef Rai-Choudhury P, Hower PL (1973) Growth and characterization of polycrystalline silicon. J Electrochem Soc 120:1761–1766CrossRef
41.
go back to reference Kamins TI (1971) Hall mobility in chemically deposited polycrystalline silicon. J Appl Phys 42:4357–4365CrossRef Kamins TI (1971) Hall mobility in chemically deposited polycrystalline silicon. J Appl Phys 42:4357–4365CrossRef
42.
go back to reference Seto JYW (1975) The electrical properties of polycrystalline silicon films. J Appl Phys 46:5247–5254CrossRef Seto JYW (1975) The electrical properties of polycrystalline silicon films. J Appl Phys 46:5247–5254CrossRef
43.
go back to reference Liu XD, Park YH (2003) Structure and transport properties of (Bi1-xSbx)2Te3 thermoelectric materials prepared by mechanical alloying and pulse discharge sintering. Mater Trans 43:681–687 Liu XD, Park YH (2003) Structure and transport properties of (Bi1-xSbx)2Te3 thermoelectric materials prepared by mechanical alloying and pulse discharge sintering. Mater Trans 43:681–687
44.
go back to reference Barnard RD (1972) Thermoelectricity in metals and alloys. Taylor and Francis, London Barnard RD (1972) Thermoelectricity in metals and alloys. Taylor and Francis, London
45.
go back to reference Zhang Q, Zhang QY, Chen S, Liu WS, Lukas K, Yan X, Wang HZ, Wang DZ, Opeila C, Chen G, Ren ZF (2012) Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides. Nano Energy 1:183–189CrossRef Zhang Q, Zhang QY, Chen S, Liu WS, Lukas K, Yan X, Wang HZ, Wang DZ, Opeila C, Chen G, Ren ZF (2012) Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides. Nano Energy 1:183–189CrossRef
46.
go back to reference Ma Y, Hao Q, Poudel B, Lan YC, Yu B, Wang DZ, Chen G, Ren ZF (2008) Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett 8:2580–2584CrossRef Ma Y, Hao Q, Poudel B, Lan YC, Yu B, Wang DZ, Chen G, Ren ZF (2008) Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett 8:2580–2584CrossRef
47.
go back to reference Kim HS, Gibbs ZM, Tang Y, Wang H, Snyder GJ (2015) Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater 3:041506CrossRef Kim HS, Gibbs ZM, Tang Y, Wang H, Snyder GJ (2015) Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater 3:041506CrossRef
48.
go back to reference Xu ZJ, Hu LP, Ying PJ, Zhao XB, Zhu TJ (2015) Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater 84:385–392CrossRef Xu ZJ, Hu LP, Ying PJ, Zhao XB, Zhu TJ (2015) Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater 84:385–392CrossRef
Metadata
Title
Effect of annealing on microstructure and thermoelectric properties of hot-extruded Bi–Sb–Te bulk materials
Authors
Zhi-Lei Wang
Takehiro Araki
Tetsuhiko Onda
Zhong-Chun Chen
Publication date
12-03-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2211-x

Other articles of this Issue 12/2018

Journal of Materials Science 12/2018 Go to the issue

Premium Partners